Optimization of landfill leachate treatment by microwave oxidation using the Taguchi method

  • C.-J. Yeh
  • S.-L. LoEmail author
  • J. Kuo
  • Y.-C. Chou
Original Paper


Landfill leachate issue in Taiwan was often to be concerned for its treatment technology, effects, and costs. An experimental study using microwave oxidation process to treat leachate was designed and optimized using Taguchi L16 orthogonal array (OA) design, coupled with the signal-to-noise (S/N) ratio method and the analysis of variance (ANOVA) method, and compared the relationships between them. Three experimental factors, microwave (MW) power settings, persulfate (PS) doses, and MW irradiation time (T), as well as three target parameters, total organic carbon (TOC), color, and UV254, were studied. The optimal conditions were found to be: 550 W, 1 M, and 120 min for TOC removals of 80% and color removals of 96%; 775 W, 1 M, and 120 min for UV254 removals of 55%. The ranking of significance of experimental factors was: MW > PS > T for TOC removals, PS > MW > T for color removals, and MW > PS > T for UV254 removals. The quality loss function values were used to compare the quality loss situation among different experimental conditions in the Taguchi OA design. The predicted removals of target parameters under the optimal conditions by Taguchi method and ANOVA were similar to the actual results from the confirmation experimental runs.

Graphical Abstract


Microwave Persulfate Chemical oxidation Landfill leachate Taguchi orthogonal array ANOVA 



The UV–Vis spectrophotometer and the TOC analyzer were provided by Department of Water Resources and Environmental Engineering, Tamkang University. We would like to thank Professors Chi Wang Li, Shyh Fang Kang, and Tau Being Hsu for their valuable comments and assistance.


  1. Abbasi M, Ghafari-Nazari A, Reddy S, Fard M (2014) A new approach for optimizing automotive crashworthiness: concurrent usage of ANFIS and Taguchi method. Struct Multidiscip O 49:485–499. doi: 10.1007/s00158-013-0986-6 CrossRefGoogle Scholar
  2. Akıncıoğlu S, Gökkaya H, Uygur İ (2016) The effects of cryogenic-treated carbide tools on tool wear and surface roughness of turning of Hastelloy C22 based on Taguchi method. Int J Adv Manuf Technol 82:303–314. doi: 10.1007/s00170-015-7356-z CrossRefGoogle Scholar
  3. Amani T, Veysi K, Dastyar W, Elyasi S (2015) Studying interactive effects of operational parameters on continuous bipolar electrocoagulation–flotation process for treatment of high-load compost leachate. Int J Environ Sci Technol 12:2467–2474. doi: 10.1007/s13762-015-0773-6 CrossRefGoogle Scholar
  4. Amor C, De Torres-Socías E, Peres JA, Maldonado MI, Oller I, Malato S, Lucas MS (2015) Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. J Hazard Mater 286:261–268. doi: 10.1016/j.jhazmat.2014.12.036 CrossRefGoogle Scholar
  5. Ata ON, Aygun K, Okur H, Kanca A (2016) Determination of ammonia removal from aqueous solution and volumetric mass transfer coefficient by microwave-assisted air stripping. Int J Environ Sci Technol 13:2459–2466. doi: 10.1007/s13762-016-1082-4 CrossRefGoogle Scholar
  6. Balki MK, Sayin C, Sarıkaya M (2016) Optimization of the operating parameters based on Taguchi method in an SI engine used pure gasoline, ethanol and methanol. Fuel 180:630–637. doi: 10.1016/j.fuel.2016.04.098 CrossRefGoogle Scholar
  7. Chu W, Li D, Gao N, Templeton MR, Tan C, Gao Y (2015) The control of emerging haloacetamide DBP precursors with UV/persulfate treatment. Water Res 72:340–348. doi: 10.1016/j.watres.2014.09.019 CrossRefGoogle Scholar
  8. Chuang YS, Huang CY, Lay CH, Chen CC, Sen B, Lin CY (2012) Fermentative bioenergy production from distillers grains using mixed microflora. Int J Hydrog Energy 37:15547–15555. doi: 10.1016/j.ijhydene.2012.01.035 CrossRefGoogle Scholar
  9. Chys M, Oloibiri VA, Audenaert WT, Demeestere K, Van Hulle SW (2015) Ozonation of biologically treated landfill leachate: efficiency and insights in organic conversions. Chem Eng J 277:104–111. doi: 10.1016/j.cej.2015.04.099 CrossRefGoogle Scholar
  10. Civan F, Özaltun DH, Kıpçak E, Akgün M (2015) The treatment of landfill leachate over Ni/Al2O3 by supercritical water oxidation. J Supercrit Fluids 100:7–14. doi: 10.1016/j.supflu.2015.02.018 CrossRefGoogle Scholar
  11. Copur M, Kizilca M, Kocakerim MM (2015) Determination of the optimum conditions for copper leaching from chalcopyrite concentrate ore using Taguchi method. Chem Eng Commun 202:927–935. doi: 10.1080/00986445.2014.891506 CrossRefGoogle Scholar
  12. Deng J, Shao Y, Gao N, Deng Y, Tan C, Zhou S (2014) Zero-valent iron/persulfate (Fe0/PS) oxidation acetaminophen in water. Int J Environ Sci Technol 11:881–890. doi: 10.1007/s13762-013-0284-2 CrossRefGoogle Scholar
  13. Enshaeieh M, Nahvi I, Madani M (2014) Improving microbial oil production with standard and native oleaginous yeasts by using Taguchi design. Int J Environ Sci Technol 11:597–604. doi: 10.1007/s13762-013-0373-2 CrossRefGoogle Scholar
  14. Fan Y, Ji Y, Kong D, Lu J, Zhou Q (2015) Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process. J Hazard Mater 300:39–47. doi: 10.1016/j.jhazmat.2015.06.058 CrossRefGoogle Scholar
  15. Galindo LA, Puillandre N, Strong EE, Bouchet P (2014) Using microwaves to prepare gastropods for DNA barcoding. Mol Ecol Resour 14:700–705. doi: 10.1111/1755-0998.12231 CrossRefGoogle Scholar
  16. Garcia SN, Clubbs RL, Stanley JK, Scheffe B, Yelderman JC, Brooks BW (2013) Comparative analysis of effluent water quality from a municipal treatment plant and two on-site wastewater treatment systems. Chemosphere 92:38–44. doi: 10.1016/j.chemosphere.2013.03.007 CrossRefGoogle Scholar
  17. Gifford M, Liu J, Rittmann BE, Vannela R, Westerhoff P (2015) Phosphorus recovery from microbial biofuel residual using microwave peroxide digestion and anion exchange. Water Res 70:130–137. doi: 10.1016/j.watres.2014.11.052 CrossRefGoogle Scholar
  18. Go AW, Sutanto S, Tran-Nguyen PL, Ismadji S, Gunawan S, Ju YH (2014) Biodiesel production under subcritical solvent condition using subcritical water treated whole Jatropha curcas seed kernels and possible use of hydrolysates to grow Yarrowia lipolytica. Fuel 120:46–52. doi: 10.1016/j.fuel.2013.11.066 CrossRefGoogle Scholar
  19. Govindan K, Raja M, Noel M, James EJ (2014) Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide. J Hazard Mater 272:42–51. doi: 10.1016/j.jhazmat.2014.02.036 CrossRefGoogle Scholar
  20. Hassan M, Wang X, Wang F, Wu D, Hussain A, Xie B (2016) Coupling ARB-based biological and photochemical (UV/TiO2 and UV/S2O8 2−) techniques to deal with sanitary landfill leachate. Waste Manag. doi: 10.1016/j.wasman.2016.09.003 CrossRefGoogle Scholar
  21. Hilles AH, Amr SSA, Hussein RA, El-Sebaie OD, Arafa AI (2016) Performance of combined sodium persulfate/H2O2 based advanced oxidation process in stabilized landfill leachate treatment. J Environ Manag 166:493–498. doi: 10.1016/j.jenvman.2015.10.051 CrossRefGoogle Scholar
  22. Huang YF, Shih CH, Chiueh PT, Lo SL (2015) Microwave co-pyrolysis of sewage sludge and rice straw. Energy 87:638–644. doi: 10.1016/ CrossRefGoogle Scholar
  23. Ji Y, Dong C, Kong D, Lu J, Zhou Q (2015) Heat-activated persulfate oxidation of atrazine: implications for remediation of groundwater contaminated by herbicides. Chem Eng J 263:45–54. doi: 10.1016/j.cej.2014.10.097 CrossRefGoogle Scholar
  24. Karthik PS, Singh SP (2015) Conductive silver inks and their applications in printed and flexible electronics. RSC Adv 5:77760–77790. doi: 10.1039/C5RA12013F CrossRefGoogle Scholar
  25. Karthikeyan S, Kumar MA, Maharaja P, Partheeban T, Sridevi J, Sekaran G (2014) Process optimization for the treatment of pharmaceutical wastewater catalyzed by poly sulpha sponge. J Taiwan Inst Chem Eng 45:1739–1747. doi: 10.1016/j.jtice.2014.01.009 CrossRefGoogle Scholar
  26. Khorshidi B, Thundat T, Fleck BA, Sadrzadeh M (2015) Thin film composite polyamide membranes: parametric study on the influence of synthesis conditions. RSC Adv 5:54985–54997. doi: 10.1039/C5RA08317F CrossRefGoogle Scholar
  27. Lambert T, Teodoru CR, Nyoni FC, Bouillon S, Darchambeau F, Massicotte P, Borges AV (2016) Along-stream transport and transformation of dissolved organic matter in a large tropical river. Biogeosciences 13:2727–2741. doi: 10.5194/bg-13-2727-2016 CrossRefGoogle Scholar
  28. Lampkowski JS, Maza JC, Verma S, Young DD (2015) Optimization of solid-supported Glaser-Hay reactions in the microwave. Molecules 20:5276–5285. doi: 10.3390/molecules20045276 CrossRefGoogle Scholar
  29. Li Z, Xue Q, Liu L, Li J (2015) Precipitates in landfill leachate mediated by dissolved organic matters. J Hazard Mater 287:278–286. doi: 10.1016/j.jhazmat.2015.01.05 CrossRefGoogle Scholar
  30. Li S, Zhang G, Wang P, Zheng H, Zheng Y (2016a) Microwave-enhanced Mn-Fenton process for the removal of BPA in water. Chem Eng J 294:371–379. doi: 10.1016/j.cej.2016.03.006 CrossRefGoogle Scholar
  31. Li Z, Yang Q, Zhong Y, Li X, Zhou L, Li X, Zeng G (2016b) Granular activated carbon supported iron as a heterogeneous persulfate catalyst for the pretreatment of mature landfill leachate. RSC Adv 6:987–994. doi: 10.1039/C5RA21781D CrossRefGoogle Scholar
  32. Lin CC, Lee LT, Hsu LJ (2014) Degradation of polyvinyl alcohol in aqueous solutions using UV-365 nm/S2O8 2− process. Int J Environ Sci Technol 11:831–838. doi: 10.1007/s13762-013-0280-6 CrossRefGoogle Scholar
  33. Markiewicz JT, Wudl F (2015) Perylene, oligorylenes, and aza-analogs. ACS Appl Mater Interfaces 7:28063–28085. doi: 10.1021/acsami.5b02243 CrossRefGoogle Scholar
  34. Mekjinda N, Ritchie RJ (2015) Breakdown of food waste by anaerobic fermentation and non-oxygen producing photosynthesis using a photosynthetic bacterium. Waste Manag 35:199–206. doi: 10.1016/j.wasman.2014.10.018 CrossRefGoogle Scholar
  35. Monteagudo JM, Durán A, González R, Expósito AJ (2015) In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2. Appl Catal B Environ 176:120–129. doi: 10.1016/j.apcatb.2015.03.055 CrossRefGoogle Scholar
  36. Moreira FC, Soler J, Fonseca A, Saraiva I, Boaventura RA, Brillas E, Vilar VJ (2015) Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate. Water Res 81:375–387. doi: 10.1016/j.watres.2015.05.036 CrossRefGoogle Scholar
  37. Mustroph H, Ernst S, Senns B, Towns AD (2015) Molecular electronic spectroscopy: from often neglected fundamental principles to limitations of state-of-the-art computational methods. Color Technol 131:9–26. doi: 10.1111/cote.12120 CrossRefGoogle Scholar
  38. Oloibiri V, Ufomba I, Chys M, Audenaert WT, Demeestere K, Van Hulle SW (2015) A comparative study on the efficiency of ozonation and coagulation–flocculation as pretreatment to activated carbon adsorption of biologically stabilized landfill leachate. Waste Manag 43:335–342. doi: 10.1016/j.wasman.2015.06.014 CrossRefGoogle Scholar
  39. Qi X, Li Z (2016) Efficiency optimization of a microwave-assisted Fenton-like process for the pretreatment of chemical synthetic pharmaceutical wastewater. Desalination Water Treat 57:11756–11764. doi: 10.1080/19443994.2015.1046949 CrossRefGoogle Scholar
  40. Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2:219–236Google Scholar
  41. Rai S, Wasewar KL, Lataye DH, Mukhopadhyay J, Yoo CK (2013) Feasibility of red mud neutralization with seawater using Taguchi’s methodology. Int J Environ Sci Technol 10:305–314. doi: 10.1007/s13762-012-0118-7 CrossRefGoogle Scholar
  42. Rehman A, Raza ZA, Masood R, Hussain MT, Ahmad N (2015) Multi-response optimization in enzymatic desizing of cotton fabric under various chemo-physical conditions using a Taguchi approach. Cellulose 22:2107–2116. doi: 10.1007/s10570-015-0598-y CrossRefGoogle Scholar
  43. Sadikoglu HO, Ongen A (2016) Stabilization of galvanic sludge by microwave pre-treated pyrolysis. Int J Environ Sci Technol 13:691–698. doi: 10.1007/s13762-015-0913-z CrossRefGoogle Scholar
  44. Silveira JE, Zazo JA, Pliego G, Bidóia ED, Moraes PB (2015) Electrochemical oxidation of landfill leachate in a flow reactor: optimization using response surface methodology. Environ Sci Pollut R 22:5831–5841. doi: 10.1007/s11356-014-3738-2 CrossRefGoogle Scholar
  45. Taguchi G (1986) Introduction to quality engineering: designing quality into products and processes. Asian Productivity Organization, TokyoGoogle Scholar
  46. Tenório-Neto ET, Guilherme MR, Lima-Tenório MK, Scariot DB, Nakamura CV, Rubira AF, Kunita MH (2015) Synthesis and characterization of a pH-responsive poly (ethylene glycol)-based hydrogel: acid degradation, equilibrium swelling, and absorption kinetic characteristics. Colloid Polym Sci 239:3611–3622. doi: 10.1007/s00396-015-3744-z CrossRefGoogle Scholar
  47. Verginelli I, Baciocchi R (2013) Role of natural attenuation in modeling the leaching of contaminants in the risk analysis framework. J Environ Manag 114:395–403. doi: 10.1016/j.jenvman.2012.10.035 CrossRefGoogle Scholar
  48. Wang J, Ma Y, Ouyang L, Tu Y (2016) A new Bayesian approach to multi-response surface optimization integrating loss function with posterior probability. Eur J Oper Res 249:231–237. doi: 10.1016/j.ejor.2015.08.033 CrossRefGoogle Scholar
  49. Witt ON (1876) Zur kenntniss des baues und der bildung färbender kohlenstoffverbindungen. Ber Deut Chem Ges 9:522–527. doi: 10.1002/cber.187600901164 CrossRefGoogle Scholar
  50. Xie S, Ma Y, Strong PJ, Clarke WP (2015) Fluctuation of dissolved heavy metal concentrations in the leachate from anaerobic digestion of municipal solid waste in commercial scale landfill bioreactors: the effect of pH and associated mechanisms. J Hazard Mater 299:577–583. doi: 10.1016/j.jhazmat.2015.07.065 CrossRefGoogle Scholar
  51. Yeşilyurt M, Çolak S, Çalban T, Genel Y (2005) Determination of the optimum conditions for the dissolution of colemanite in H3PO4 solutions. Ind Eng Chem Res 44:3761–3765. doi: 10.1021/ie020823s CrossRefGoogle Scholar
  52. Yu HW, Anumol T, Park M, Pepper I, Scheideler J, Snyder SA (2015a) On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process. Water Res 81:250–260. doi: 10.1016/j.watres.2015.05.064 CrossRefGoogle Scholar
  53. Yu Y, Chen Z, Guo Z, Liao Z, Yang L, Wang J, Chen Z (2015b) Removal of refractory contaminants in municipal landfill leachate by hydrogen, oxygen and palladium: a novel approach of hydroxyl radical production. J Hazard Mater 287:349–355. doi: 10.1016/j.jhazmat.2015.01.070 CrossRefGoogle Scholar
  54. Zou SY, Huang R, Chi MC, Hsu HM (2013) Factors affecting the effectiveness of inorganic silicate sealer material through multi-quality characteristics. Materials 6:1191–1204. doi: 10.3390/ma6031191 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  1. 1.Graduate Institute of Environmental EngineeringNational Taiwan UniversityTaipeiTaiwan, ROC
  2. 2.Department of Civil and Environmental EngineeringCalifornia State UniversityFullertonUSA

Personalised recommendations