Gas separation properties of swelled nanocomposite chitosan membranes cross-linked by 3-aminopropyltriethoxysilane

  • V Zargar
  • M AsghariEmail author
  • M Afsari
Original Paper


Chitosan/APTEOS mixed matrix membranes with 5, 10, 20 wt% loading of APTEOS were synthesized using solution casting method to improve gas separation properties of membranes. Chitosan concentration was varied from 1 to 2.5 wt% to obtain best concentration of chitosan. CO2 and N2 permeabilities and CO2/N2 selectivity increased with feed pressure and APTEOS content up to 10 wt% and then decreased by the increase in APTEOS loading from 10 to 20 wt%. The membranes with 10 wt% content of APTEOS at 14 bar showed the best CO2 permeability and CO2/N2 selectivity of 79.3 barrer and 84.38, respectively. FTIR and SEM results revealed appropriate distribution of nanoparticles in the polymeric matrix, and AFM analysis showed that the roughness of the membrane surface increased significantly by APTEOS content.


Chitosan Gas separation Nanocomposite membrane APTEOS Permeability 



The authors are grateful to the Energy Research Institute at University of Kashan for supporting this work.


  1. Bollini P, Didas SA, Jones CW (2011) Amine-oxide hybrid materials for acid gas separations. J Mater Chem 21:15100. doi: 10.1039/c1jm12522b CrossRefGoogle Scholar
  2. Boroglu MS, Gurkaynak MA (2011) The preparation of novel silica modified polyimide membranes: synthesis, characterization, and gas separation properties. Polym Adv Technol 22:545–553. doi: 10.1002/pat.1543 CrossRefGoogle Scholar
  3. Chen JC, Feng X, Penlidis A (2004) Gas permeation through poly(ether-b-amide) (PEBAX 2533) block copolymer membranes. Sep Sci Technol 39:149–164. doi: 10.1081/ss-120027406 CrossRefGoogle Scholar
  4. Chen JH, Liu QL, Zhang XH, Zhang QG (2007) Pervaporation and characterization of chitosan membranes cross-linked by 3-aminopropyltriethoxysilane. J Membr Sci 292:125–132. doi: 10.1016/j.memsci.2007.01.026 CrossRefGoogle Scholar
  5. Chen XY, Vinh-Thang H, Ramirez AA et al (2015) Membrane gas separation technologies for biogas upgrading. RSC Adv 5:24399–24448. doi: 10.1039/C5RA00666J CrossRefGoogle Scholar
  6. Cornelius CJ, Marand E (2002) Hybrid silica-polyimide composite membranes: gas transport properties. J Membr Sci 202:97–118CrossRefGoogle Scholar
  7. de Godoi FC, Rodriguez-Castellon E, Guibal E, Beppu MM (2013) An XPS study of chromate and vanadate sorption mechanism by chitosan membrane containing copper nanoparticles. Chem Eng J 234:423–429. doi: 10.1016/j.cej.2013.09.006 CrossRefGoogle Scholar
  8. Dong Y, Ruan Y, Wang H et al (2004) Studies on glass transition temperature of chitosan with four techniques. J Appl Polym Sci 93:1553–1558. doi: 10.1002/app.20630 CrossRefGoogle Scholar
  9. El-azzami LA, Grulke EA (2009) Carbon dioxide separation from hydrogen and nitrogen Facilitated transport in arginine salt–chitosan membranes. J Memb Sci 328:15–22. doi: 10.1016/j.memsci.2008.08.038 CrossRefGoogle Scholar
  10. Gibbins J, Chalmers H (2008) Carbon capture and storage. Energy Policy 36:4317–4322. doi: 10.1016/j.enpol.2008.09.058 CrossRefGoogle Scholar
  11. Khulbe KC, Matsuura T (2016) Recent progress in polymeric hollow-fibre membrane preparation and applications. Membr Technol 2016:7–13. doi: 10.1016/S0958-2118(16)30149-5 CrossRefGoogle Scholar
  12. Kim JH, Lee YM (2001) Gas permeation properties of poly (amide-6-b-ethylene oxide)–silica hybrid membranes. Membr Sci 193:209–225CrossRefGoogle Scholar
  13. Krajewska B (2005) Membrane-based processes performed with use of chitin/chitosan materials. Sep Purif Technol 41:305–312. doi: 10.1016/j.seppur.2004.03.019 CrossRefGoogle Scholar
  14. Ming J, Chiu HC (2012) Preparation and characterization of polyvinyl alcohol/chitosan blended membrane for alkaline direct methanol fuel cells. J Membr Sci 419–420:65–71. doi: 10.1016/j.memsci.2012.06.051 CrossRefGoogle Scholar
  15. Niknejad SMS, Savoji H, Pourafshari Chenar M, Soltanieh M (2016) Separation of H2S from CH4 by polymeric membranes at different H2S concentrations. Int J Environ Sci Technol. doi: 10.1007/s13762-016-1156-3 Google Scholar
  16. Nunes SP, Peinemann KV, Ohlrogge K et al (1999) Membranes of poly (ether imide) and nanodispersed silica. J Membr Sci 157:219–226CrossRefGoogle Scholar
  17. Park S-H, Kim K-J, So W-W et al (2003) Gas separation properties of 6FDA-based polyimide membranes with a polar group. Macromol Res 11:157–162. doi: 10.1007/BF03218346 CrossRefGoogle Scholar
  18. Premakshi HG, Ramesh K, Kariduraganavar MY (2015) Modification of crosslinked chitosan membrane using NaY zeolite for pervaporation separation of water-isopropanol mixtures. Chem Eng Res Des 94:32–43. doi: 10.1016/j.cherd.2014.11.014 CrossRefGoogle Scholar
  19. Sanders DF, Smith ZP, Guo R et al (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54:4729–4761. doi: 10.1016/j.polymer.2013.05.075 CrossRefGoogle Scholar
  20. Saufi SM, Ismail AF (2002) Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. Songklanakarin J Sci Technol 24:843–854Google Scholar
  21. Šimkovic I (2008) What could be greener than composites made from polysaccharides? Carbohydr Polym 74:759–762CrossRefGoogle Scholar
  22. Smaihi M, Schrotter J, Lesimple C et al (1999) Gas separation properties of hybrid imide ± siloxane copolymers with various silica contents. J Membr Sci 161:157–170CrossRefGoogle Scholar
  23. Susanto H, Samsudin AM, Rokhati N, Widiasa IN (2013) Immobilization of glucose oxidase on chitosan-based porous composite membranes and their potential use in biosensors. Enzyme Microb Technol 52:386–392. doi: 10.1016/j.enzmictec.2013.02.005 CrossRefGoogle Scholar
  24. Tual C, Espuche E, Escoubes M, Domard A (2000) Transport properties of chitosan membranes: influence of crosslinking. J Polym Sci Part B Polym Phys 38:1521–1529. doi: 10.1002/(SICI)1099-0488(20000601)38:11<1521:AID-POLB120>3.0.CO;2-# CrossRefGoogle Scholar
  25. Unuabonah EI, Olu-Owolabi BI, Adebowale KO (2016) Competitive adsorption of metal ions onto goethite–humic acid-modified kaolinite clay. Int J Environ Sci Technol 13:1043–1054. doi: 10.1007/s13762-016-0938-y CrossRefGoogle Scholar
  26. Vilaplana F, Strömberg E, Karlsson S (2010) Environmental and resource aspects of sustainable biocomposites. Polym Degrad Stab 95:2147–2161. doi: 10.1016/j.polymdegradstab.2010.07.016 CrossRefGoogle Scholar
  27. Xiao S, Huang RYM, Feng X (2006) Preparation and properties of trimesoyl chloride crosslinked poly(vinyl alcohol) membranes for pervaporation dehydration of isopropanol. J Membr Sci 286:245–254. doi: 10.1016/j.memsci.2006.09.042 CrossRefGoogle Scholar
  28. Xiao S, Feng X, Huang RYM (2007a) Trimesoyl chloride crosslinked chitosan membranes for CO2/N2 separation and pervaporation dehydration of isopropanol. J Membr Sci 306:36–46. doi: 10.1016/j.memsci.2007.08.021 CrossRefGoogle Scholar
  29. Xiao S, Huang RYM, Feng X (2007b) Synthetic 6FDAeODA copolyimide membranes for gas separation and pervaporation: functional groups and separation properties. Water 48:5355–5368. doi: 10.1016/j.polymer.2007.07.010 Google Scholar
  30. Yu M, Dai Y, Yang K et al (2016) TEA incorporated CS blend composite membrane for high CO2 separation performance. RSC Adv 6:27016–27019. doi: 10.1039/C5RA25029C CrossRefGoogle Scholar
  31. Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2:204–226. doi: 10.1002/cben.201400025 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  1. 1.Separation Processes Research Group (SPRG), Department of EngineeringUniversity of KashanKashanIran
  2. 2.Energy Research InstituteUniversity of KashanKashanIran

Personalised recommendations