Advertisement

Overview of the potential of microalgae for CO2 sequestration

  • V. Bhola
  • F. Swalaha
  • R. Ranjith Kumar
  • M. Singh
  • F. BuxEmail author
Review

Abstract

An economic and environmentally friendly approach of overcoming the problem of fossil CO2 emissions would be to reuse it through fixation into biomass. Carbon dioxide (CO2), which is the basis for the formation of complex sugars by green plants and microalgae through photosynthesis, has been shown to significantly increase the growth rates of certain microalgal species. Microalgae possess a greater capacity to fix CO2 compared to C4 plants. Selection of appropriate microalgal strains is based on the CO2 fixation and tolerance capability together with lipid potential, both of which are a function of biomass productivity. Microalgae can be propagated in open raceway ponds or closed photobioreactors. Biological CO2 fixation also depends on the tolerance of selected strains to high temperatures and the amount of CO2 present in flue gas, together with SOx and NOx. Potential uses of microalgal biomass after sequestration could include biodiesel production, fodder for livestock, production of colorants and vitamins. This review summarizes commonly employed microalgal species as well as the physiological pathway involved in the biochemistry of CO2 fixation. It also presents an outlook on microalgal propagation systems for CO2 sequestration as well as a summary on the life cycle analysis of the process.

Keywords

CO2 sequestration Flue gas Life cycle analysis Microalgae Photosynthesis 

Notes

Acknowledgments

The authors hereby acknowledge the National Research Foundation (South Africa) for the financial contribution.

References

  1. Alabi AO, Tampier M, Bibeau E (2009) Microalgae technologies and processes for biofuels/bioenergy production in British Columbia. The British Columbia Innovation Council, WinnipegGoogle Scholar
  2. Aresta M, Dibenedetto A, Barberio G (2005) Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study. Fuel Process Technol 86:1679–1693CrossRefGoogle Scholar
  3. Benemann JR (1993) Utilization of carbon dioxide from fossil fuel—burning power plants with biological system. Energy Convers Manag 34:100–999Google Scholar
  4. Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report US DOE. http://www.osti.gov/bridge/servlets/purl/493389-FXQyZ2/webviewable/493389.pdf. Accessed 16 July 2012
  5. Benemann JR, Koopman BL, Weissman JC, Eisenberg DM, Oswald WJ (1977) Species control in large scale microalgae biomass production. Report to University of California Berkeley SERL 77-5, SAN/740-77/1Google Scholar
  6. Borkenstein CG, Knoblechner J, Frühwirth H, Schagerl M (2011) Cultivation of Chlorella emersonii with flue gas derived from a cement plant. J Appl Phycol 23:131–135CrossRefGoogle Scholar
  7. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321CrossRefGoogle Scholar
  8. Brennan L, Owende P (2010) Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577CrossRefGoogle Scholar
  9. Calvin M (1989) 40 years of photosynthesis and related activities. Photosynth Res 21:3–16Google Scholar
  10. Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56CrossRefGoogle Scholar
  11. Carroll JJ, Mather AE (1992) The system carbon dioxide-water and the Krichevsky–Kasarnovsky equation. J Solut Chem 21:1201–1209CrossRefGoogle Scholar
  12. Cerveny J, Setlik I, Trtilek M, Nedbal L (2009) Photobioreactor for cultivation and real-time, in situ measurement of O2 and CO2 exchange rates, growth dynamics, and of chlorophyll fluorescence emission of photoautotrophic microorganisms. Eng Life Sci 9:247–253CrossRefGoogle Scholar
  13. Chen CY, Yeh KL, Su HM, Lo YC, Chen WM, Chang JS (2010) Strategies to enhance cell growth and achieve high-level oil production of a Chlorella vulgaris isolate. Biotechnol Prog 26:679–686CrossRefGoogle Scholar
  14. Cheng LH, Zhang L, Chen HL, Gao CJ (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50:324–329CrossRefGoogle Scholar
  15. Chiang CL, Lee CM, Chen PC (2011) Utilization of the cyanobacteria Anabaena sp. CH1 in biological carbon dioxide mitigation processes. Bioresour Technol 102:5400–5405CrossRefGoogle Scholar
  16. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  17. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131CrossRefGoogle Scholar
  18. Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS (2008) Reduction of CO2 by a high density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99:3389–3396CrossRefGoogle Scholar
  19. Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838CrossRefGoogle Scholar
  20. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819CrossRefGoogle Scholar
  21. Costa JAV, Linde GA, Atala DIP (2000) Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms. World J Microbiol Biotechnol 16:15–18CrossRefGoogle Scholar
  22. de Morais MG, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445CrossRefGoogle Scholar
  23. Del Campo JA, Garcia-Gonzalez M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:117–1163Google Scholar
  24. Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170CrossRefGoogle Scholar
  25. Farrelly DJ, Everard CD, Fagan CC, McDonnell KP (2013) Carbon sequestration and the role of biological carbon mitigation: a review. Renew Sustain Energy Rev 21:712–727CrossRefGoogle Scholar
  26. Geckler RP, Sane JO, Tew RW (1962) Highly concentrated carbon dioxide as a carbon source for continuous algae cultures [Online]. http://contrails.iit.edu/DigitalCollection/1962/AMRLTDR62-116article06.pdf [2013, 03/06]
  27. Gimpel JA, Specht EA, Georgianna DR, Mayfield SP (2013) Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr Opin Chem Biol 17:1–7CrossRefGoogle Scholar
  28. Giordano M, Beardall J, Raven JA (2005) Mechanisms in algae: mechanisms, environmental modulation, and evolution. Ann Rev Plant Biol 56:99–131CrossRefGoogle Scholar
  29. Gnansounou E, Dauriat A, Villegas J, Panichelli L (2009) Life cycle assessment of biofuels: energy and greenhouse gas balances. Bioresour Technol 100:4919–4930CrossRefGoogle Scholar
  30. Godhe A, Anderson DM, Rehnstam-Holm AS (2001) PCR amplification of microalgal DNA for sequencing and species identification: studies on fixatives and algal growth stages. Harmful Algae 1:375–382CrossRefGoogle Scholar
  31. Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interf 7:703–726CrossRefGoogle Scholar
  32. Gressel J, van der Vlugt CJB, Bergmans HEN (2013) Environmental risks of large scale cultivation of microalgae: Mitigation of spills. Algal Research. http://dx.doi.org/10.1016/j.algal.2013.04.002
  33. Grobbelaar JU, Nedbal L, Tichy V (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J Appl Phycol 8:335–343CrossRefGoogle Scholar
  34. Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high-temperature. Phytochemistry 31:3345–3348CrossRefGoogle Scholar
  35. Heasman M, Diemar J, O’Connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs—a summary. Aquac Res 31:637–659CrossRefGoogle Scholar
  36. Hende SVD, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae: (Bio-) chemical interactions leading to biotechnological opportunities. Biotechnol Adv. doi: 10.1016/j.biotechadv.2012.02.015 Google Scholar
  37. Ho SH, Chen CY, Lee DJ, Chang JS (2011) Perspectives on microalgal CO2-emission mitigation systems-a review. Biotechnol Adv 29:189–198CrossRefGoogle Scholar
  38. Hsueh HT, Li WJ, Chen HH, Chu H (2009) Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta. J Photochem Photobiol, B 95:33–39CrossRefGoogle Scholar
  39. Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998) Ultra high-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49:655–662CrossRefGoogle Scholar
  40. Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46CrossRefGoogle Scholar
  41. Huntley M, Redalje D (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strateg Global Change 12:573–608CrossRefGoogle Scholar
  42. Iverson TM (2006) Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Curr Opin Chem Biol 10:91–100CrossRefGoogle Scholar
  43. Iwasaki I, Kurano N, Miyachi S (1996) Effects of high-CO2 stress on photosystem II in a green alga, Chlorococcum littorale, which has a tolerance to high CO2. J Photochem Photobiol B Biol 36:327–332CrossRefGoogle Scholar
  44. Jacob-Lopes E, Lacerda LMCF, Franco TT (2008) Biomass production and carbon dioxide fixation by Aphanothece microscopica Nageli in a bubble column photobioreactor. Biochem Eng J 40:27–34CrossRefGoogle Scholar
  45. Jacob-Lopes E, Revah S, Hernandez S, Shirai K, Franco TT (2009) Development of operational strategies to remove carbon dioxide in photobioreactors. Chem Eng J 153:120–126CrossRefGoogle Scholar
  46. Jacob-Lopes E, Scoparo CHG, Queiroz MI, Franco TT (2010) Biotransformations of carbon dioxide in photobioreactors. Energy Convers Manag 51:894–900CrossRefGoogle Scholar
  47. Kadam KL (2001) Microalgae production from power plant flue gas: Environmental implications on a life cycle basis. Technical report, National Renewable Energy Laboratory Contract No. DE-AC36-99-GO10337Google Scholar
  48. Khan SA, Rashmi, Hussain MZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sust Energy Rev 13:2361–2372Google Scholar
  49. Khoo HH, Sharratt PN, Das P, Balasubramanian RK, Naraharisetti PK, Shaik S (2011) Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons. Bioresour Technol 102:5800–5807CrossRefGoogle Scholar
  50. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, Langenhove HV (2011) Enhanced CO2 fixation and biofuels production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380CrossRefGoogle Scholar
  51. Kuramochi T, Ramirez A, Turkenburg W, Faaij A (2012) Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes. Prog Energy Combust 38:87–112CrossRefGoogle Scholar
  52. Kurano N, Ikemoto H, Miyashita H, Hasegawa T, Hata H, Miyachi S (1995) Fixation and utilization of carbon dioxide by microalgal photosynthesis. Energy Convers Manag 36:689–692CrossRefGoogle Scholar
  53. Lam MK, Lee KT, Mohamed AR (2012) Current status and challenges on microalgae-based carbon capture. Int J Greenh Gas Con 10:456–469CrossRefGoogle Scholar
  54. Langley NM, Harrison STL, Van Hille RP (2012) A critical evaluation of CO2 supplementation to algal systems by direct injection. Biochem Eng J 68:70–75CrossRefGoogle Scholar
  55. Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315CrossRefGoogle Scholar
  56. Lee JS, Lee JP (2003) Review of advances in biological CO2 mitigation technology. Biotechnol Bioproc E 8:354–359CrossRefGoogle Scholar
  57. Lee JS, Kim DK, Lee JP, Park SC, Koh JH, Cho HS, Kim SW (2002) Effects of SO2 and NO2 on growth of Chlorella sp. KR-1. Bioresour Technol 8:1–4CrossRefGoogle Scholar
  58. Lipinsky ES (1992) R&D status of technologies for utilization of carbon dioxide. Energy Convers Manag 33:505–512CrossRefGoogle Scholar
  59. López CVG, Fernández FGA, Sevilla JMF, Fernández JFS, García MCC, Grima EM (2010) Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. Bioresour Technol 100:5904–5910CrossRefGoogle Scholar
  60. Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) CO2 fixation from flue gas on coal fired thermal power plant by microalgae. Energy Convers Manag 36:717–720CrossRefGoogle Scholar
  61. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232CrossRefGoogle Scholar
  62. Matsumoto H, Shioji N, Hamasaki A, Ikuta Y, Fukuda Y, Sato M, Endo N, Tsukamoto T (1995) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotech 51:681–692CrossRefGoogle Scholar
  63. Miyairi S (1995) CO2 assimilation in a thermophilic cyanobacterium. Energy Convers Manag 36:763–766CrossRefGoogle Scholar
  64. Molina GE, Belarbi EH, Fernandez FG, Medina AR, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131CrossRefGoogle Scholar
  65. Molina-Grima E, Belarbi EH, Ferna′ndez AFG, Robles MA, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRefGoogle Scholar
  66. Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102:57–70CrossRefGoogle Scholar
  67. Nagase H, Eguchi K, Yoshihara K, Hirata K, Miyamoto K (1998) Improvement of microalgal NOx removal in bubble column and airlift reactors. J Ferment Bioeng 86:421–423CrossRefGoogle Scholar
  68. Nakajima Y, Ueda R (2000) The effect of reducing light-harvesting pigment on marine microalgal productivity. J Appl Phycol 12:285–290CrossRefGoogle Scholar
  69. Negoro M, Hamasaki A, IKuta Y, Makita T, Hirayama K, Suzuki S (1993) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 39(40):643–653CrossRefGoogle Scholar
  70. Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466CrossRefGoogle Scholar
  71. Ono E, Cuello JL (2006) Feasibility assessment of microalgal carbon dioxide sequestration technology with photobioreactor and solar collector. Biosyst Eng 95:597–606CrossRefGoogle Scholar
  72. Ono E, Cuello JL (2007) Carbon dioxide mitigation using thermophilic cyanobacteria. Biosyst Eng 96:129–134CrossRefGoogle Scholar
  73. Ota M, Kato Y, Watanabe H, Watanabe M, Sato Y, Smith RL (2009) Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate. Bioresour Technol 100:5237–5242CrossRefGoogle Scholar
  74. Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy 37:3428–3437CrossRefGoogle Scholar
  75. Pedroni P, Davison J, Beckert H, Bergman P, Benemann J (2001) A proposal to establish an international network on biofixation of CO2 and greenhouse gas abatement with microalgae. J Energy Environ Technol 1:136–150Google Scholar
  76. Pires JCM, Alvim-Ferraz MCM, Martins FG, Simões M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sustain Energy Rev 16:3043–3053CrossRefGoogle Scholar
  77. Radakovits R, Jinkerson RE, Darzins AL, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501CrossRefGoogle Scholar
  78. Ralph PJ, Gademann R (2003) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Biol 82:222–237CrossRefGoogle Scholar
  79. Ramanan R, Kannan K, Deshkar A, Yadav R, Chakrabarti T (2010) Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresour Technol 101:2616–2622CrossRefGoogle Scholar
  80. Ravelonandro PH, Ratianarivo DH, Joannis-Cassan C, Isambert A, Raherimandimby M (2008) Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. J Chem Technol Biotechnol 83:842–848CrossRefGoogle Scholar
  81. Rosgaard L, de Porcellinis AJ, Jacobsen JH, Frigaard NU, Sakuragi Y (2012) Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol 162:134–147CrossRefGoogle Scholar
  82. Satoh A, Kurano N, Miyachi S (2001) Inhibition of photosynthesis by intracellular carbonic anhydrase in microalgae under excess concentrations of CO2. Photosynth Res 68:215–224CrossRefGoogle Scholar
  83. Scragg AH, Illman AM, Carden A, Shales SW (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23:67–73CrossRefGoogle Scholar
  84. Seckbach J, Libby WF (1970) Vegetative life on Venus? Or investigations with algae which grow under pure CO2 in hot acid media at elevated pressures. Origins Life Evol B 2:121–143CrossRefGoogle Scholar
  85. Sharma YC, Singh B, Korstad J (2011) A critical review on recent methods used for economically viable and eco-friendly development of microalgae as a potential feedstock for synthesis of biodiesel (critical review). Green Chem 13:2993–3006CrossRefGoogle Scholar
  86. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U. S. Department of Energy’s aquatic species program - biodiesel from algae. NREL/TP-580-24190. US Department of Energy’s Office of Fuels DevelopmentGoogle Scholar
  87. Skjanes K, Lindblad P, Muller J (2007) BioCO2–a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomol Eng 24:405–413CrossRefGoogle Scholar
  88. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRefGoogle Scholar
  89. Stewart C, Hessami MA (2005) A study of methods of carbon dioxide capture and sequestration—the sustainability of a photosynthetic bioreactor approach. Energy Convers Manag 46:403–420CrossRefGoogle Scholar
  90. Suh IS, Lee CG (2003) Photobioreactor engineering: design and performance. Biotechnol Bioproc E 8:313–321CrossRefGoogle Scholar
  91. Sung KD, Lee JS, Shin CS, Park SC, Choi MJ (1999) CO2 fixation by Chlorella sp.KR-1 and its cultural characteristics. Bioresour Technol 68:269–273CrossRefGoogle Scholar
  92. Sydney EB (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol 101:5892–5896CrossRefGoogle Scholar
  93. Tsoutsos T, Kouloumpis V, Zafiris T, Foteinis S (2010) Life cycle assessment for biodiesel production under Greek climate conditions. J Clean Prod 18:328–335CrossRefGoogle Scholar
  94. Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028CrossRefGoogle Scholar
  95. Vasumathi KK, Premalatha M, Subramanian P (2012) Parameters influencing the design of photobioreactors for the growth of microalgae. Renew Sustain Energy Rev 16:5443–5450CrossRefGoogle Scholar
  96. Wang B, Li YQ, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718CrossRefGoogle Scholar
  97. Watanabe MM, Kawachi M, Hiroki M, Kasai F (2000) NIES-collection list of strains, microalgae and protozoa. Microbial culture collections (ed) National Institute for Environmental Studies, Tsukuba, JapanGoogle Scholar
  98. Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J 6:87–102CrossRefGoogle Scholar
  99. You T, Barnett SM (2004) Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochem Eng J 19:251–258CrossRefGoogle Scholar
  100. Zeng X, Danquah MK, Chen XD, Lu Y (2011) Microalgae bioengineering: from CO2 fixation to biofuel production. Renew Sustain Energy Rev 15:3252–3260CrossRefGoogle Scholar
  101. Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214:552–561CrossRefGoogle Scholar
  102. Zhao B, Zhang Y, Xiong K, Zhang Z, Hao X, Liu T (2011) Effect of cultivation mode on microalgal growth and CO2 fixation. Chem Eng Res Des 9:1758–1762CrossRefGoogle Scholar
  103. Zijffers JWF, Schippers KJ, Zheng K, Janssen M, Tramper J, Wijffels RH (2010) Maximum photosynthetic yield of green microalgae in photobioreactors. Mar Biotechnol 12:708–718CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2013

Authors and Affiliations

  • V. Bhola
    • 1
  • F. Swalaha
    • 1
  • R. Ranjith Kumar
    • 1
  • M. Singh
    • 2
  • F. Bux
    • 1
    Email author
  1. 1.Institute for Water and Wastewater TechnologyDurban University of TechnologyDurbanSouth Africa
  2. 2.College of EngineeringUniversity of GeorgiaAthensUSA

Personalised recommendations