Advertisement

Acta Neurologica Belgica

, Volume 119, Issue 4, pp 523–533 | Cite as

Current evidence for treatment with nusinersen for spinal muscular atrophy: a systematic review

  • Antoon MeylemansEmail author
  • Jan De Bleecker
Review article
  • 440 Downloads

Abstract

Recent discovery of nusinersen, an antisense oligonucleotide drug, has provided encouragement for improving treatment of spinal muscular atrophy. No therapeutic options currently exist for this autosomal recessive motor neuron disorder. Nusinersen is developed for intrathecal use and binds to a specific sequence within the survival motor neuron 2 pre-messenger RNA, modifying the splicing process to promote expression of full-length survival motor neuron protein. We performed a MEDLINE and CENTRAL search to investigate the current evidence for treatment with nusinersen in patients with spinal muscular atrophy. Four papers were withheld, including two phase-3 randomized controlled trials, one phase-2 open-label clinical trial and one phase-1 open-label clinical trial. Outcome measures concerned improvement in motor function and milestones, as well as event-free survival and survival. Results of these trials are hopeful with significant and clinically meaningful improvement due to treatment with intrathecal nusinersen in patients with early- and later-onset spinal muscular atrophy, although this does not restore age-appropriate function. Intrathecal nusinersen has acceptable safety and tolerability. Further trials regarding long-term effects and safety aspects as well as trials including broader spinal muscular atrophy and age categories are required and ongoing.

Keywords

Nusinersen Intrathecal Spinal muscular atrophy Survival of motor neuron 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13760_2019_1199_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1000 kb)

References

  1. 1.
    Mercuri E, Darras BT, Chiriboga CA et al (2018) Nusinersen versus Sham control in later-onset spinal muscular atrophy. N Engl J Med 378:625–635.  https://doi.org/10.1056/NEJMoa1710504 CrossRefPubMedGoogle Scholar
  2. 2.
    Finkel RS, Mercuri E, Darras BT et al (2017) Nusinersen versus Sham control in infantile-onset spinal muscular atrophy. N Engl J Med 377:1723–1732.  https://doi.org/10.1056/NEJMoa1702752 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Finkel RS, Chiriboga CA, Vajsar J et al (2016) Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388:3017–3026.  https://doi.org/10.1016/S0140-6736(16)31408-8 CrossRefPubMedGoogle Scholar
  4. 4.
    Chiriboga CA, Swoboda KJ, Darras BT et al (2016) Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 86:890–897.  https://doi.org/10.1212/WNL.0000000000002445 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fonteyn EM, Keus SH, Verstappen CC et al (2014) The effectiveness of allied health care in patients with ataxia: a systematic review. J Neurol 261:251–258.  https://doi.org/10.1007/s00415-013-6910-6 CrossRefPubMedGoogle Scholar
  6. 6.
    Oxford Centre for Evidence-Based Medicine (2009) Oxford Centre for Evidence-based Medicine—Levels of Evidence. https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/. Accessed 28 Dec 2018
  7. 7.
    Ashman EJ, Gronseth GS (2012) Level of evidence reviews: three years of progress. Neurology 79:13–14.  https://doi.org/10.1212/WNL.0b013e31825dce83 CrossRefPubMedGoogle Scholar
  8. 8.
    Ryan R, Hill S (2016) How to GRADE the quality of the evidence. La Trobe University, Melbourne. http://cccrg.cochrane.org/author-resources. Accessed 28 Dec 2018
  9. 9.
    US National Library of Medicine. A Study of Multiple Doses of Nusinersen (ISIS 396443) Delivered to Infants With Genetically Diagnosed and Presymptomatic Spinal Muscular Atrophy. https://clinicaltrials.gov/ct2/show/NCT02386553?term=NCT02386553&rank=1. Accessed 21 Dec 2018
  10. 10.
    US National Library of Medicine. A study to assess the safety and tolerability of nusinersen (ISIS 396443) in participants with spinal muscular atrophy (SMA). https://clinicaltrials.gov/ct2/show/NCT02462759?term=NCT02462759&rank=1. Accessed 21 Dec 2018
  11. 11.
    L Yan, N Kuntz, W Farwell et al (2017) Nusinersen in infants with spinal muscular atrophy(SMA): design/interim results of the ENDEAR study. No to hattatsu. Conference: 59th annual meeting of the japanese society of child neurology, JSCN 2017. Japan, 2017, 49, S280Google Scholar
  12. 12.
    R Finkel, N Kuntz, E Mercuri et al (2017) Efficacy and safety of nusinersen in infants with spinal muscular atrophy (SMA): final results from the phase 3 ENDEAR study. European journal of paediatric neurology. Conference: 12th European Paediatric Neurology Society Congress, EPNS 2017. France, 2017, 21(Supplement 1), e14–e15CrossRefGoogle Scholar
  13. 13.
    L Servais, M Farrar, RS Finkel, J Kirschner et al (2018) Nusinersen demonstrates greater efficacy in infants with shorter disease duration: end of study results from the endear study in infants with spinal muscular atrophy (SMA). Developmental medicine and child neurology. Conference: 44th annual conference of the british paediatric neurology association, BPNA 2018. United kingdom, 2017, 59(Supplement 4)Google Scholar
  14. 14.
    PB Shieh, G Acsadi, W Mueller-Felber et al (2018) Safety and efficacy of nusinersen in infants/children with spinal muscular atrophy (SMA): part 1 of the phase 2 EMBRACE study. Canadian journal of neurological sciences. Conference: 53rd annual congress of the canadian neurological sciences federation. Canada, 2018, 45(Supplement 2)Google Scholar
  15. 15.
    N Kuntz, E Mercuri, R Finkel et al (2017) Efficacy and safety of nusinersen in children with later-onset spinal muscular atrophy (SMA): end of study results from the phase 3 CHERISH study. Annals of neurology. Conference: 46th annual meeting of the child neurology society. United states, 2017, 82(Supplement 21), S264Google Scholar
  16. 16.
    E McNeil, R Finkel, B Darras et al (2017) Nusinersen improves motor function in infants with and without permanent ventilation: results from the ENDEAR Study in Infantile-Onset Spinal Muscular Atrophy (SMA). Annals of neurology. Conference: 46th annual meeting of the child neurology society. United states, 2017, 82(Supplement 21), S264–S265Google Scholar
  17. 17.
    R Finkel, E Mercuri, J Kirschner et al (2017) Efficacy and safety of nusinersen in children with later-onset spinal muscular atrophy (SMA): interim results of the phase 3 CHERISH study. Neurology. Conference: 69th american academy of neurology annual meeting, AAN 2017. United states, 2017, 89(8), e100–e101Google Scholar
  18. 18.
    E Mercuri, R Finkel, J Kirschner et al (2017) Interim analysis of the phase 3 CHERISH study evaluating nusinersen in patients with later-onset spinal muscular atrophy (SMA): primary and descriptive secondary endpoints. European journal of paediatric neurology. Conference: 12th european paediatric neurology society congress, EPNS 2017. France, 2017, 21(Supplement 1), e15CrossRefGoogle Scholar
  19. 19.
    PB Shieh, G Acsadi, W Mueller-Felber (2018) Safety and efficacy of nusinersen in infants/children with Spinal Muscular Atrophy (SMA): part 1 of the phase 2 EMBRACE study. Neurology. Conference: 70th annual meeting of the american academy of neurology, AAN 2018. United states, 2018, 90(15 Supplement 1) (no pagination)Google Scholar
  20. 20.
    Anonymous. Emerging Science Abstracts—70th American Academy of Neurology Annual Meeting, AAN 2018. Neurology. Conference: 70th annual meeting of the American Academy of Neurology, AAN 2018. United states, 2018, 90(24) (no pagination)Google Scholar
  21. 21.
    Christie-Brown V, Mitchell J, Talbot K (2017) The SMA Trust: the role of a disease-focused research charity in developing treatments for SMA. Gene Ther 24:544–546.  https://doi.org/10.1038/gt.2017.47 CrossRefPubMedGoogle Scholar
  22. 22.
    Jablonka S, Sendtner M (2017) Developmental regulation of SMN expression: pathophysiological implications and perspectives for therapy development in spinal muscular atrophy. Gene Ther 24:506–513.  https://doi.org/10.1038/gt.2017.46 CrossRefPubMedGoogle Scholar
  23. 23.
    Glascock J, Lenz M, Hobby K, Jarecki J (2017) Cure SMA and our patient community celebrate the first approved drug for SMA. Gene Ther 24:498–500.  https://doi.org/10.1038/gt.2017.39 CrossRefPubMedGoogle Scholar
  24. 24.
    King NMP, Bishop CE (2017) New treatments for serious conditions: ethical implications. Gene Ther 24:534–538.  https://doi.org/10.1038/gt.2017.32 CrossRefPubMedGoogle Scholar
  25. 25.
    Hoy SM (2017) Nusinersen: first global approval. Drugs 77:473–479.  https://doi.org/10.1007/s40265-017-0711-7 CrossRefPubMedGoogle Scholar
  26. 26.
    Paton DM (2017) Nusinersen: antisense oligonucleotide to increase SMN protein production in spinal muscular atrophy. Drugs Today (Barc) 53:327–337.  https://doi.org/10.1358/dot.2017.53.6.2652413 CrossRefGoogle Scholar
  27. 27.
    Maharshi V, Hasan S (2017) Nusinersen: the first option beyond supportive care for spinal muscular atrophy. Clin Drug Investig 37:807–817.  https://doi.org/10.1007/s40261-017-0557-5 CrossRefPubMedGoogle Scholar
  28. 28.
    Brazilian Medical Association, Silvinato A, Bernardo WM (2018) Spinal muscular atrophy 5Q—treatment with nusinersen. Rev Assoc Med Bras (1992) 64:484–491.  https://doi.org/10.1590/1806-9282.64.06.484 CrossRefGoogle Scholar
  29. 29.
    Wood MJA, Talbot K, Bowerman M (2017) Spinal muscular atrophy: antisense oligonucleotide therapy opens the door to an integrated therapeutic landscape. Hum Mol Genet 26(R2):R151–R159.  https://doi.org/10.1093/hmg/ddx215 CrossRefPubMedGoogle Scholar
  30. 30.
    Singh NN, Howell MD, Androphy EJ, Singh RN (2017) How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Ther 24:520–526.  https://doi.org/10.1038/gt.2017.34 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Stein CA, Castanotto D (2017) FDA-approved oligonucleotide therapies in 2017. Mol Ther 25:1069–1075.  https://doi.org/10.1016/j.ymthe.2017.03.023 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bishop KM, Montes J, Finkel RS (2018) Motor milestone assessment of infants with spinal muscular atrophy using the hammersmith infant neurological Exam-Part 2: experience from a nusinersen clinical study. Muscle Nerve 57:142–146.  https://doi.org/10.1002/mus.25705 CrossRefPubMedGoogle Scholar
  33. 33.
    Haché M, Swoboda KJ, Sethna N et al (2016) Intrathecal injections in children with spinal muscular atrophy: nusinersen clinical trial experience. J Child Neurol 31:899–906.  https://doi.org/10.1177/0883073815627882 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Singh RN, Singh NN (2018) Mechanism of splicing regulation of spinal muscular atrophy genes. Adv Neurobiol 20:31–61.  https://doi.org/10.1007/978-3-319-89689-2_2 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Arnold ES, Fischbeck KH (2018) Spinal muscular atrophy. Handb Clin Neurol 148:591–601.  https://doi.org/10.1016/B978-0-444-64076-5.00038-7 CrossRefPubMedGoogle Scholar
  36. 36.
    Xu L, Irony I, Bryan WW, Dunn B (2017) Development of gene therapies-lessons from nusinersen. Gene Ther 24:527–528.  https://doi.org/10.1038/gt.2017.64 CrossRefPubMedGoogle Scholar
  37. 37.
    Finkel RS, McDermott MP, Kaufmann P et al (2014) Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 83:810–817.  https://doi.org/10.1212/WNL.0000000000000741 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    O’Hagen JM, Glanzman AM, McDermott MP et al (2007) An expanded version of the Hammersmith Functional Motor Scale for SMA II and III patients. Neuromuscul Disord 17:693–694.  https://doi.org/10.1016/j.nmd.2007.05.009 CrossRefPubMedGoogle Scholar
  39. 39.
    Glanzman AM, O’Hagen JM, McDermott MP et al (2011) Validation of the expanded hammersmith functional motor scale in spinal muscular atrophy type II and III. J Child Neurol 26:1499–1507.  https://doi.org/10.1177/0883073811420294 CrossRefPubMedGoogle Scholar
  40. 40.
    Mazzone ES, Mayhew A, Montes J et al (2017) Revised upper limb module for spinal muscular atrophy: development of a new module. Musc Nerve 55:869–874.  https://doi.org/10.1002/mus.25430 CrossRefGoogle Scholar
  41. 41.
    WHO Multicentre Growth Reference Study Group (2006) WHO Motor Development Study: windows of achievement for six gross motor development milestones. Acta Paediatr Suppl 450:86–95.  https://doi.org/10.1111/j.1651-2227.2006.tb02379.x CrossRefGoogle Scholar
  42. 42.
    Wang CH, Finkel RS, Bertini ES et al (2007) Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol 22:1027–1049.  https://doi.org/10.1177/0883073807305788 CrossRefPubMedGoogle Scholar
  43. 43.
    Oskoui M, Levy G, Garland CJ et al (2007) The changing natural history of spinal muscular atrophy type 1. Neurology 69:1931–1936.  https://doi.org/10.1212/01.wnl.0000290830.40544.b9 CrossRefPubMedGoogle Scholar
  44. 44.
    Lemoine TJ, Swoboda KJ, Bratton SL et al (2012) Spinal muscular atrophy type 1: are proactive respiratory interventions associated with longer survival? Pediatr Crit Care Med 13:e161–165.  https://doi.org/10.1097/PCC.0b013e3182388ad1 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Michelson D, Ciafaloni E, Ashwal S et al (2018) Evidence in focus: nusinersen use in spinal muscular atrophy. Neurology 91:923–933.  https://doi.org/10.1212/WNL.0000000000006502 CrossRefPubMedGoogle Scholar

Copyright information

© Belgian Neurological Society 2019

Authors and Affiliations

  1. 1.Department of neurologyGhent University Hospital, BelgiumGhentBelgium

Personalised recommendations