Advertisement

Effect of memantine hydrochloride on cisplatin-induced neurobehavioral toxicity in mice

  • Nadia Abdulkareem SalihEmail author
  • Banan Khalid Al-Baggou
Original article
  • 12 Downloads

Abstract

Cisplatin is an anticancer agent widely used in the treatment of malignant tumors. One of the major adverse effects of cisplatin is its neurotoxicity. Memantine, an uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, has been reported to have neuroprotective effects against neurological deficits. This study therefore investigated the possible protective role of memantine as an agent to minimize the neurobehavioral toxic side effects of cisplatin. Two different therapeutic doses of memantine (5 mg/kg) and (10 mg/kg) were orally administered for 30 days to 50 male BALB/c mice divided into 5 groups: G1: no treatment; G2: cisplatin treatment; G3: memantine treatment; G4: pretreatment of (5 mg/kg) memantine with cisplatin (4 mg/kg); G5: pretreatment of 10 mg/kg memantine with cisplatin (4 mg/kg). Weekly neurobehavioral investigations were conducted using the following battery of tests: open field activity, negative geotaxis, hole-board test, swimming test, and calculation of weight. At the end of the experimental period the mice were euthanized, and immunohistochemistry was then used to measure the expression scores of nicotinic acetylcholine receptors (nAChRs) in the muscles and brain. Results revealed that mice in G2 showed a significant decrease in the ability to perform neurobehavioral tasks. The mice in G5 exhibited a significantly improved ability on these tests, indicating a complete neurobehavioral protective effect, while the mice in G4 showed partial protection. The nAChRs score showed higher expression in the case of G2 in comparison with G3, G4, and G5. Weight loss was exhibited in G2, while in G3 and G1 these values were normal. A therapeutic dose of memantine 10 mg/kg yielded more protection than 5 mg/kg in the treatment of neuropathy; this highlights the importance of using memantine to decrease the main side effects of cisplatin.

Keywords

Cisplatin Memantine Neurotoxicity nAChRs Open field Hole-board test Negative geotaxis and swimming 

Notes

Acknowledgements

We would like to express our profound gratitude to all the doctors and technicians in the Histopathology Department of Shorsh Hospital for their cooperation and assistance, especially Dr. Michael Hughson, Dr. Hemin and Mr. Zahir for their helpful assistance and generous support during the research.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest in preparing this article.

References

  1. 1.
    Ciarimboli G, Ludwig T, Lang D, Pavenstadt H, Koepsell H, Piechota HJ et al (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167(6):1477–1484 (PubMed PMID: 16314463. Pubmed Central PMCID: 1613191) Google Scholar
  2. 2.
    Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762 (PubMed PMID: 20045723. Pubmed Central PMCID: 2823977) Google Scholar
  3. 3.
    Fearon KC, Glass DJ, Guttridge DC (2012) Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 16(2):153–166 (PubMed PMID: 22795476) Google Scholar
  4. 4.
    Salih NA, Al-Baggou BK (2019) Effect of memantine hydrochloride on cisplatin-induced toxicity with special reference to renal toxicity. Int J Pharmacol 15(2):189–199Google Scholar
  5. 5.
    Bardgett ME, Boeckman R, Krochmal D, Fernando H, Ahrens R, Csernansky JG (2003) NMDA receptor blockade and hippocampal neuronal loss impair fear conditioning and position habit reversal in C57Bl/6 mice. Brain Res Bull 60(1–2):131–142 (PubMed PMID: 12725901) Google Scholar
  6. 6.
    Huang Q, Dunn RT 2nd, Jayadev S, DiSorbo O, Pack FD, Farr SB et al (2001) Assessment of cisplatin-induced nephrotoxicity by microarray technology. Toxicol Sci 63(2):196–207 (PubMed PMID: 11568363) Google Scholar
  7. 7.
    Andres AL, Gong X, Di K, Bota DA (2014) Low-doses of cisplatin injure hippocampal synapses: a mechanism for ‘chemo’ brain? Exp Neurol 255:137–144 (PubMed PMID: 24594220. Pubmed Central PMCID: 4059602) Google Scholar
  8. 8.
    Hsu CY, Chan YP, Chang J (2007) Antioxidant activity of extract from Polygonum cuspidatum. Biol Res 40(1):13–21 (PubMed PMID: 17657351) Google Scholar
  9. 9.
    Al-Malki AL, Sayed AA (2014) Thymoquinone attenuates cisplatin-induced hepatotoxicity via nuclear factor kappa-beta. BMC Complement Altern Med 14:282 (PubMed PMID: 25088145. Pubmed Central PMCID: 4129109) Google Scholar
  10. 10.
    Chakravarthi S, Jessop CE, Bulleid NJ (2006) The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep 7(3):271–275 (PubMed PMID: 16607396. Pubmed Central PMCID: 1456887) Google Scholar
  11. 11.
    Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463(1–3):3–33 (PubMed PMID: 12600700) Google Scholar
  12. 12.
    Stewart JD, Bolt HM (2012) Cisplatin-induced nephrotoxicity. Arch Toxicol 86(8):1155–1156 (PubMed PMID: 22696163) Google Scholar
  13. 13.
    Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266(1–2):37–56 (PubMed PMID: 15646026) Google Scholar
  14. 14.
    Dickey CA, De Mesquita DD, Morgan D, Pennypacker KR (2004) Induction of memory-associated immediate early genes by nerve growth factor in rat primary cortical neurons and differentiated mouse Neuro2A cells. Neurosci Lett 366(1):10–14 (PubMed PMID: 15265580) Google Scholar
  15. 15.
    Mohammad FK, Faris GA (2006) Behavioral effects of acute manganese chloride administration in chickens. Biol Trace Elem Res 110(3):265–273 (PubMed PMID: 16845162) Google Scholar
  16. 16.
    Mohammad FK, Faris GA, Rhayma MS, Ahmed K (2006) Neurobehavioral effects of tetramisole in mice. NeuroToxicology 27(2):153–157 (PubMed PMID: 16157386) Google Scholar
  17. 17.
    Mohan IK, Khan M, Shobha JC, Naidu MU, Prayag A, Kuppusamy P et al (2006) Protection against cisplatin-induced nephrotoxicity by Spirulina in rats. Cancer Chemother Pharmacol 58(6):802–808 (PubMed PMID: 16552571) Google Scholar
  18. 18.
    Mohammad FK, Al-Zubaidy MH, Alias AS (2007) Sedative and hypnotic effects of combined administration of metoclopramide and ketamine in chickens. Lab Anim (NY) 36(4):35–39 (PubMed PMID: 17380147) Google Scholar
  19. 19.
    Torrelo A, Colmenero I, Requena L, Paller AS, Ramot Y, Richard Lee CC et al (2015) Histologic and immunohistochemical features of the skin lesions in CANDLE Syndrome. Am J Dermatopathol 37(7):517–522 (PubMed PMID: 26091509. Pubmed Central PMCID: 4476069) Google Scholar
  20. 20.
    Song P, Sekhon HS, Fu XW, Maier M, Jia Y, Duan J et al (2008) Activated cholinergic signaling provides a target in squamous cell lung carcinoma. Cancer Res 68(12):4693–4700 (PubMed PMID: 18559515. Pubmed Central PMCID: 2865551) Google Scholar
  21. 21.
    Pelle E, Huang X, Mammone T, Marenus K, Maes D, Frenkel K (2003) Ultraviolet-B-induced oxidative DNA base damage in primary normal human epidermal keratinocytes and inhibition by a hydroxyl radical scavenger. J Investig Dermatol 121(1):177–183 (PubMed PMID: 12839579) Google Scholar
  22. 22.
    Sharma US, Kumar A (2011) In vitro antioxidant activity of Rubus ellipticus fruits. J Adv Pharm Technol Res 2(1):47–50 (PubMed PMID: 22171292. Pubmed Central PMCID: 3217685) Google Scholar
  23. 23.
    Obata T, Yamanaka Y, Kinemuchi H, Oreland L (2001) Release of dopamine by perfusion with 1-methyl-4-phenylpyridinium ion (MPP(+)) into the striatum is associated with hydroxyl free radical generation. Brain Res 906(1–2):170–175 (PubMed PMID: 11430875) Google Scholar
  24. 24.
    Moore AM, Einhorn LH, Estes D, Govindan R, Axelson J, Vinson J et al (2006) Gefitinib in patients with chemo-sensitive and chemo-refractory relapsed small cell cancers: a Hoosier Oncology Group phase II trial. Lung Cancer 52(1):93–97 (PubMed PMID: 16488055) Google Scholar
  25. 25.
    Mansour HH, Hafez HF, Fahmy NM (2006) Silymarin modulates cisplatin-induced oxidative stress and hepatotoxicity in rats. J Biochem Mol Biol 39(6):656–661 (PubMed PMID: 17129399) Google Scholar
  26. 26.
    Mohammad FK, Al-Badrany YM, Al-Jobory MM (2008) Acute toxicity and cholinesterase inhibition in chicks dosed orally with organophosphate insecticides. Arh Hig Rada Toksikol 59(3):145–151 (PubMed PMID: 18796381) Google Scholar
  27. 27.
    Malik NM, Moore GB, Smith G, Liu YL, Sanger GJ, Andrews PL (2006) Behavioural and hypothalamic molecular effects of the anti-cancer agent cisplatin in the rat: a model of chemotherapy-related malaise? Pharmacol Biochem Behav 83(1):9–20 (PubMed PMID: 16443263) Google Scholar
  28. 28.
    Inao T, Harashima N, Monma H, Okano S, Itakura M, Tanaka T et al (2012) Antitumor effects of cytoplasmic delivery of an innate adjuvant receptor ligand, poly(I:C), on human breast cancer. Breast Cancer Res Treat 134(1):89–100 (PubMed PMID: 22203435) Google Scholar
  29. 29.
    Dineley KT, Xia X, Bui D, Sweatt JD, Zheng H (2002) Accelerated plaque accumulation, associative learning deficits, and up-regulation of alpha 7 nicotinic receptor protein in transgenic mice co-expressing mutant human presenilin 1 and amyloid precursor proteins. J Biol Chem 277(25):22768–22780 (PubMed PMID: 11912199) Google Scholar
  30. 30.
    Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K et al (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438(7070):1017Google Scholar
  31. 31.
    El-Sayed EM, Abd-Allah AR, Mansour AM, El-Arabey AA (2015) Thymol and carvacrol prevent cisplatin-induced nephrotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats. J Biochem Mol Toxicol 29(4):165–172 (PubMed PMID: 25487789) Google Scholar
  32. 32.
    Chipana C, Camarasa J, Pubill D, Escubedo E (2008) Memantine prevents MDMA-induced neurotoxicity. Neurotoxicology 29(1):179–183 (PubMed PMID: 17980434) Google Scholar
  33. 33.
    Chtourou Y, Gargouri B, Kebieche M, Fetoui H (2015) Naringin abrogates cisplatin-induced cognitive deficits and cholinergic dysfunction through the down-regulation of AChE expression and iNOS signaling pathways in hippocampus of aged rats. J Mol Neurosci 56(2):349–362 (PubMed PMID: 25896911) Google Scholar
  34. 34.
    Carvour M, Song C, Kaul S, Anantharam V, Kanthasamy A, Kanthasamy A (2008) Chronic low-dose oxidative stress induces caspase-3-dependent PKCδ proteolytic activation and apoptosis in a cell culture model of dopaminergic neurodegeneration. Ann N Y Acad Sci 1139(1):197–205Google Scholar
  35. 35.
    Danysz W, Parsons CG, Mobius HJ, Stoffler A, Quack G (2000) Neuroprotective and symptomatological action of memantine relevant for Alzheimer’s disease—a unified glutamatergic hypothesis on the mechanism of action. Neurotox Res 2(2–3):85–97 (PubMed PMID: 16787834) Google Scholar
  36. 36.
    Jiang M, Wei Q, Wang J, Du Q, Yu J, Zhang L et al (2006) Regulation of PUMA-alpha by p53 in cisplatin-induced renal cell apoptosis. Oncogene 25(29):4056–4066 (PubMed PMID: 16491117) Google Scholar
  37. 37.
    Inoue M, Sato EF, Nishikawa M, Park AM, Kira Y, Imada I et al (2003) Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem 10(23):2495–2505 (PubMed PMID: 14529465) Google Scholar
  38. 38.
    Rustembegovic A, Kundurovic Z, Sapcanin A, Sofic E (2003) A placebo-controlled study of memantine (Ebixa) in dementia of Wernicke–Korsakoff syndrome. Med Arh 57(3):149–150 (PubMed PMID: 12858653) Google Scholar
  39. 39.
    Volbracht C, van Beek J, Zhu C, Blomgren K, Leist M (2006) Neuroprotective properties of memantine in different in vitro and in vivo models of excitotoxicity. Eur J Neurosci 23(10):2611–2622 (PubMed PMID: 16817864) Google Scholar
  40. 40.
    Zhang J, Zhang YW, Chen ZW, Zhou XY, Lu S, Luo QQ et al (2008) Adjuvant chemotherapy of cisplatin, 5-fluorouracil and leucovorin for complete resectable esophageal cancer: a case-matched cohort study in east China. Dis Esophagus 21(3):207–213 (PubMed PMID: 18430100) Google Scholar
  41. 41.
    Zhang Z, Larner SF, Kobeissy F, Hayes RL, Wang KK (2010) Systems biology and theranostic approach to drug discovery and development to treat traumatic brain injury. Methods Mol Biol 662:317–329 (PubMed PMID: 20824479) Google Scholar
  42. 42.
    Zhong Q, Wen YJ, Yang HS, Luo H, Fu AF, Yang F et al (2008) Efficient inhibition of cisplatin-resistant human ovarian cancer growth and prolonged survival by gene transferred vesicular stomatitis virus matrix protein in nude mice. Ann Oncol 19(9):1584–1591 (PubMed PMID: 18436522) Google Scholar
  43. 43.
    Zhang R, Tian L, Chen LJ, Xiao F, Hou JM, Zhao X et al (2006) Combination of MIG (CXCL9) chemokine gene therapy with low-dose cisplatin improves therapeutic efficacy against murine carcinoma. Gene Ther 13(17):1263–1271 (PubMed PMID: 16672984) Google Scholar
  44. 44.
    Peng Y, Zhang R, Kong L, Shen Y, Xu D, Zheng F et al (2017) Ginsenoside Rg3 inhibits the senescence of prostate stromal cells through down-regulation of interleukin 8 expression. Oncotarget 8(39):64779–64792 (PubMed PMID: 29029391. Pubmed Central PMCID: 5630291) Google Scholar
  45. 45.
    Spurney CF, Gordish-Dressman H, Guerron AD, Sali A, Pandey GS, Rawat R et al (2009) Preclinical drug trials in the mdx mouse: assessment of reliable and sensitive outcome measures. Muscle Nerve 39(5):591–602 (PubMed PMID: 19260102. Pubmed Central PMCID: 4116326) Google Scholar
  46. 46.
    Nie L, Xia J, Li H, Zhang Z, Yang Y, Huang X et al (2017) Ginsenoside Rg1 ameliorates behavioral abnormalities and modulates the hippocampal proteomic change in triple transgenic mice of Alzheimer’s disease. Oxid Med Cell Longev 2017:6473506 (PubMed PMID: 29204248. Pubmed Central PMCID: 5674513) Google Scholar
  47. 47.
    Nair U, Bartsch H, Nair J (2007) Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: a review of published adduct types and levels in humans. Free Radic Biol Med 43(8):1109–1120 (PubMed PMID: 17854706) Google Scholar
  48. 48.
    Morisaki T, Matsuzaki T, Yokoo K, Kusumoto M, Iwata K, Hamada A et al (2008) Regulation of renal organic ion transporters in cisplatin-induced acute kidney injury and uremia in rats. Pharm Res 25(11):2526–2533 (PubMed PMID: 18612803) Google Scholar
  49. 49.
    Muggia F (2009) Platinum compounds 30 years after the introduction of cisplatin: implications for the treatment of ovarian cancer. Gynecol Oncol 112(1):275–281 (PubMed PMID: 18977023) Google Scholar
  50. 50.
    El-Arabey AA (2015) Sex and age differences related to renal OCT2 gene expression in cisplatin-induced nephrotoxicity. Iran J Kidney Dis 9(4):335–336 (PubMed PMID: 26174463) Google Scholar
  51. 51.
    Jiang Y, Minet E, Zhang Z, Silver PA, Bai M (2004) Modulation of interprotomer relationships is important for activation of dimeric calcium-sensing receptor. J Biol Chem 279(14):14147–14156 (PubMed PMID: 14729680) Google Scholar
  52. 52.
    Shibata Y, Baba E, Ariyama H, Miki R, Ogami N, Arita S et al (2007) Metastatic basaloid-squamous cell carcinoma of the esophagus treated by 5-fluorouracil and cisplatin. World J Gastroenterol 13(26):3634–3637 (PubMed PMID: 17659717. Pubmed Central PMCID: 4146806) Google Scholar
  53. 53.
    Sprowl JA, Ciarimboli G, Lancaster CS, Giovinazzo H, Gibson AA, Du G et al (2013) Oxaliplatin-induced neurotoxicity is dependent on the organic cation transporter OCT2. Proc Natl Acad Sci USA 110(27):11199–11204 (PubMed PMID: 23776246. Pubmed Central PMCID: 3704038) Google Scholar

Copyright information

© Belgian Neurological Society 2019

Authors and Affiliations

  1. 1.Pharmacology, Department of Basic Sciences, College of Veterinary MedicineUniversity of SulaimaniSulaimaniIraq
  2. 2.Department of Pharmacology and Toxicology, College of Veterinary MedicineUniversity of MosulMosulIraq

Personalised recommendations