Retinal vascular density evaluation of migraine patients with and without aura and association with white matter hyperintensities

  • Mahmut Oğuz UlusoyEmail author
  • Bahriye Horasanlı
  • Ali Kal
Original Article


Underlying pathophysiological mechanism of migraine is not all clear; however, recent reports suggested that neurovascular system is involved. We aimed to evaluate the retinal vessel densities of migraine patients with and without aura and the associations with white matter hyperintensities (WMH), using optical coherence tomography angiography (OCTA). We recruited 28 migraine with aura (MWA) patients, 26 migraine without aura (MWO) and age and sex-matched 34 healthy controls in our study. All participants were evaluated with optical coherence tomography (OCT) and OCTA for optic nerve parameters and retinal vessel densities with RTVue XR AVANTI. On macular OCTA, superficial and deeper retinal foveal vessel density (VD) were significantly lesser in MWA and MWO than controls. On optic nerve OCTA, whole optic disc, peripapillary, superior hemisphere, superior layer and temporal layer VD were significantly lesser in MWA and MWO. In group of MWA with the WMH, deeper foveal VD and superior hemisphere VD, average RNFL, superior hemisphere and superior layer were significantly lesser and also foveal avascular zone was significantly larger than the group of without WMH. Alterations of VD in patients with migraine are showed in our study. In addition, in group of MWA these alterations have associations with WMH. Supporting these findings with further reports can be useful to understand the pathophysiology of this disease.


Migraine Aura Optical coherence tomography angiography White matter hyperintensities 



No stated funding sources.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.


  1. 1.
    Russo A, Tessitore A, Tedeschi G (2013) Migraine and trigeminal system-I can feel İt coming. Curr Pain Headache Rep 17(10):367CrossRefGoogle Scholar
  2. 2.
    Reggio E, Chisari CG, Ferrigno G, Patti F, Donzuso G, Sciacca G, Avitabile T, Faro S, Zappia M (2017) Migraine causes retinal and choroidal structural changes: evaluation with ocular coherence tomography. J Neurol 264(3):494–502CrossRefGoogle Scholar
  3. 3.
    Martinez A, Proupim N, Sanchez M (2008) Retinal nerve fibre layer thickness measurements using optical coherence tomography in migraine patients. Br J Ophthalmol 92(8):1069–1075CrossRefGoogle Scholar
  4. 4.
    Beversdorf D, Stommel E, Allen C, Stevens R, Lessell S (1997) Recurrent branch retinal İnfarcts İn association with migraine. Headache 37:396–399CrossRefGoogle Scholar
  5. 5.
    Cm G, Mm S (1995) Weaver Rg. retinal arterial occlusions İn young adults. Am J Ophthalmol 120:776–783CrossRefGoogle Scholar
  6. 6.
    Seneviratne U, Chong W, Billimoria Ph (2013) Brain white matter hyperintensities İn migraine: clinical and radiological correlates. Clin Neurol Neurosurg 115(7):1040–1043CrossRefGoogle Scholar
  7. 7.
    Colombo B, Dalla Libera D, Comi G (2011) Brain white matter lesions İn migraine: what’s the meaning? Neurol Sci 32(Suppl 1):S37–S40CrossRefGoogle Scholar
  8. 8.
    An L, Wang R (2008) In vivo volumetric İmaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt Express 16:11438–11452CrossRefGoogle Scholar
  9. 9.
    Mariampillai A, Standish Ba M, Eh EA (2008) Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett 33:1530–1532CrossRefGoogle Scholar
  10. 10.
    Magrath GN, Eat S, Sioufi K, Ferenczy S (2017) Variability in foveal avascular zone and capillary density using optical coherence tomographyangiography machines in healthy eyes. Retina 37(11):2102–2111CrossRefGoogle Scholar
  11. 11.
    The Headache Classification Subcommittee Of The International Headache Society. The international classification of headache disorders (2nd edn). Cephalalgia 2004;24(Suppl 1):1–160Google Scholar
  12. 12.
    Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D (2012) Split-spectrum amplitudedecorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725CrossRefGoogle Scholar
  13. 13.
    Kraus MF, Potsaid B, Mayer MA, Bock R, Baumann B, Liu JJ, Hornegger J, Fujimoto JG (2012) Motion correction in optical coherence tomography volumes on A per A-scan basis using orthogonal scan patterns. Biomed Opt Express 3:1182–1199CrossRefGoogle Scholar
  14. 14.
    Kıvanç SA, Ulusoy MO, Akova-Budak B, Olcaysu OO, Özcan ME (2015) Is ciliary muscle affected in migraine patients with aura and without aura? Med Sci Monit 21:1214–1218CrossRefGoogle Scholar
  15. 15.
    Brennan Kc CA (2010) An update on the blood vessel İn migraine. Curr Opin Neurol 23(3):266–274CrossRefGoogle Scholar
  16. 16.
    Demircan S, Ataş M, Arık Yüksel S, Ulusoy MD, Yuvacı İ, Arifoğlu H (2015) The İmpact of migraine on posterior ocular structures. J Ophthalmol 2015:868967Google Scholar
  17. 17.
    Kara Sa E, Ak K, My AD (2003) Color doppler sonography of orbital and vertebral arteries in migraineurs without aura. J Clin Ultrasound 31(6):308–314CrossRefGoogle Scholar
  18. 18.
    Flammer J, Pache M, Resink T. Vasospasm IR (2001) The pathogenesis of dis-eases with particular reference to the eye. Prog Retin Eye Res 20:319–349CrossRefGoogle Scholar
  19. 19.
    Gramer G, Weber Bh GE (2015) Migraine and vasospasm in glaucoma: age-related evaluation of 2027 patients with glaucoma or ocular hypertension. Invest Ophthalmol Vis Sci 56(13):7999–8007CrossRefGoogle Scholar
  20. 20.
    Chang MY, Phasukkijwatana N, Garrity S, Pineles SL, Rahimi M, Sarraf D, Johnston M, Charles A (2017) Foveal and peripapillary vascular decrement in migraine with aura demonstrated by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58(12):5477–5484CrossRefGoogle Scholar
  21. 21.
    Bashir A, Lipton RB, Ashina S, Ashina M (2013) Migraine and structural changes in the brain: a systematic review and meta-analysis. Neurology 81:1260–1268CrossRefGoogle Scholar
  22. 22.
    Simsek IB (2016) Retinal nerve fibre layer thickness of migraine patients with or without white matter lesions. Neuroophthalmology 41(1):7–11CrossRefGoogle Scholar
  23. 23.
    Tak A, Sengul Y, Bilak Ş (2018) Evaluation of white matter hyperintensities and retinal fiber layer, ganglion cell layer, İnner-plexiform layer, and choroidal layer in migraine patients. Neurol Sci 39(3):489–496CrossRefGoogle Scholar
  24. 24.
    Kurth T, Schurks M, Logroscino G, Gaziano Jm BJ (2008) Migraine, vascular risk, and cardiovascular events in women: prospective cohort study. BMJ 337:A636CrossRefGoogle Scholar
  25. 25.
    Mastropasqua R, Toto L, Mastropasqua A, Aloia R, De Nicola C, Mattei PA, Di Marzio G, Di Nicola M, Di Antonio L (2017) Foveal avascular zone area and parafoveal vessel density measurements in different stages of diabetic retinopathy by opticalcoherence tomography angiography. Int J Ophthalmol 10(10):1545–1551Google Scholar
  26. 26.
    Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S (2016) Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 254(6):1051–1058CrossRefGoogle Scholar
  27. 27.
    Tan F, Akarsu C, Gullu R (2005) Retinal nerve fiber layer thickness is unaffected in migraine patients. Acta Neurol Scand 112(1):19–23CrossRefGoogle Scholar
  28. 28.
    Reggio E, Chisari CG, Ferrigno G, Patti F, Donzuso G, Sciacca G, Avitabile T, Faro S (2017) Zappiam. Migraine causes retinal and choroidal structural changes: evaluation with ocular coherence tomography. J Neurol 264(3):494–502CrossRefGoogle Scholar
  29. 29.
    Tunç A, Güngen Bd, Evliyaoğlu F, Aras YG, Tekeşin AK (2017) Evaluation of retinal nerve fiber layer, ganglion cell layer and macular changes in patients with migraine. Acta Neurol Belg 117(1):121–129CrossRefGoogle Scholar
  30. 30.
    Yülek F, Dirik EB, Eren Y, Simavlı H, Uğurlu N, Çağıl N, Şimşek Ş (2015) Macula and retinal nerve fiber layer İn migraine patients: analysis by spectral domain optic coherence tomography. Semin Ophthalmol 30(2):124–128CrossRefGoogle Scholar
  31. 31.
    Gipponi S, Scaroni N, Venturelli E, Forbice E, Rao R, Liberini P, Padovani A, Semeraro F (2013) Reduction in retinal nerve fiber layer thickness in migraine patients. Neurol Sci 34(6):841–845CrossRefGoogle Scholar
  32. 32.
    Gunes A, Demirci S, Tok L, Tok O, Demirci S, Kutluhan S (2016) Is retinal nerve fiber layer thickness change related to headache lateralization in migraine? Korean J Ophthalmol 30:134–139. CrossRefGoogle Scholar
  33. 33.
    Aae E-S, Ya F, Mm H (2017) Pattern visual evoked potential, pattern electroretinogram, and retinal nerve fiber layer thickness İn patients with migraineduring and after aura. Curr Eye Res 42(9):1327–1332CrossRefGoogle Scholar
  34. 34.
    Colak H, Fa K, Mg T, Eryilmaz M, Uslu H, Goker H, Yildirim A, Gurler B (2016) Retinal nerve fiber layer, ganglion cell complex, and choroidal thicknesses, in migraine. Arq Bras Oftalmol 79(2):78–81CrossRefGoogle Scholar

Copyright information

© Belgian Neurological Society 2019

Authors and Affiliations

  • Mahmut Oğuz Ulusoy
    • 1
    Email author
  • Bahriye Horasanlı
    • 2
  • Ali Kal
    • 1
  1. 1.Department of Ophthalmology, Faculty of Medicine, Konya Research HospitalBaşkent UniversityKonyaTurkey
  2. 2.Department of Neurology, Faculty of Medicine, Konya Research HospitalBaşkent UniversityKonyaTurkey

Personalised recommendations