Acta Neurologica Belgica

, Volume 119, Issue 4, pp 541–548 | Cite as

Quantitative analysis of the retinal nerve fiber layer, ganglion cell layer and optic disc parameters by the swept source optical coherence tomography in patients with migraine and patients with tension-type headache

  • Arif Ülkü YenerEmail author
  • Osman Korucu
Original Article


The aim of the study was to measure the thicknesses of the inner retinal segments and optic nerve head (ONH) parameters in migraineurs and patients with tension-type headache (TTH) in headache-free period using swept source optical coherence tomography (SS-OCT) and to compare the outcomes with each other and those of healthy subjects. The study population consisted of 23 migraineurs, 22 TTH patients, and 25 controls with a best-corrected visual acuity of 20/20 and without a history of systemic or ocular disease. Macular ganglion cell inner plexiform layer (mGCIPL), macular ganglion cell complex (mGCC), circumpapillary retinal nerve fiber layer (cpRNFL), and ONH parameters were evaluated using SS-OCT, and the areas under the receiver-operating characteristic (ROC) curves were calculated to determine the ability of these parameters to distinguish between the patient and normal eyes. There were not statistically significant differences between the measurements acquired from migraineurs, TTH patients, and the controls. The outcomes of the patients with TTH were very similar to those of the normal participants. The areas under the ROC curves (AUC) correlated highly with the measurements obtained from the same subfields for the mGCC, MGCIPL, cpRNFL, and ONH parameters. In conclusion, SS-OCT presented reproducible and reliable measurements of posterior segment layers of the eyes, especially in sectoral configuration, and the parameters did not show significant difference between the groups.


Migraine Tension-type headache Swept source optical coherence tomography Retinal nerve fiber layer Ganglion cell layer 



No foundation support.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest.

Ethical approval

All procedures performed in the study involving human participants were in accordance with the ethical standards of the Institutional Research Committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all participants.


  1. 1.
    Stovner LJ, Hagen K, Jensen R et al (2007) The global burden of headache: a documentation of headache prevalence and disability worldwide. Cephalalgia 27:193–210CrossRefGoogle Scholar
  2. 2.
    Woods RP, Iacoboni M, Mazziotta JC (1994) Bilateral spreading cerebral hypoperfusion during spontaneous migraine headache. N Engl J Med 331:1689–1692CrossRefGoogle Scholar
  3. 3.
    Bolay H, Reuter U, Dunn AK et al (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8:136–142CrossRefGoogle Scholar
  4. 4.
    Silberstein SD (2004) Migraine pathophysiology and its clinical implications. Cephalalgia 24:2–7CrossRefGoogle Scholar
  5. 5.
    Goadsby PJ (2009) Pathophysiology of migraine. Neurol Clin 27:335–360CrossRefGoogle Scholar
  6. 6.
    Flammer J, Pache M, Resink T (2001) Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Retin Eye Res 20:319–349CrossRefGoogle Scholar
  7. 7.
    Jensen R (2001) Mechanisms of tension-type headache. Cephalalgia 21:786–789CrossRefGoogle Scholar
  8. 8.
    McKendrick AM, Vingrys AJ, Badcock DR, Heywood JT (2000) Visual field losses in subjects with migraine headache. Invest Ophthalmol Vis Sci 41:1239–1247PubMedGoogle Scholar
  9. 9.
    Yener A, Korucu O (2017) Visual field losses in patients with migraine without aura and tension-type headache. Neuroophthalmology 41:59–67CrossRefGoogle Scholar
  10. 10.
    Fercher AF (2010) Optical coherence tomography-development, principles, applications. Z Med Phys 20:251–276CrossRefGoogle Scholar
  11. 11.
    Headache Classification Committee of the International Headache Society (2013) The international classification of headache disorders, 3rd edn (beta version). Cephalalgia 33:629–808CrossRefGoogle Scholar
  12. 12.
    Schulze A, Lamparter J, Pfeiffer N et al (2011) Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 249:1039–1045CrossRefGoogle Scholar
  13. 13.
    Tan O, Chopra V, Lu AT et al (2009) Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 116:2305–2314CrossRefGoogle Scholar
  14. 14.
    Yang Z, Tatham AJ, Weinreb RN et al (2015) Diagnostic ability of macular ganglion cell inner plexiform layer measurements in glaucoma using swept source and spectral domain optical coherence tomography. PLoS One 10(5):e0125967. CrossRefGoogle Scholar
  15. 15.
    Mwanza JC, Durbin MK, Budenz DL et al (2012) Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology 119:1151–1158CrossRefGoogle Scholar
  16. 16.
    Seong M, Sung KR, Choi EH et al (2010) Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci 51:1446–1452CrossRefGoogle Scholar
  17. 17.
    Kim NR, Lee ES, Seong GJ et al (2010) Structure-function relationship and diagnostic value of Macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci 51:4646–4651CrossRefGoogle Scholar
  18. 18.
    Garas A, Vargha P, Hollo G (2011) Diagnostic accuracy of nerve fiber layer, macular thickness and disc measurements made with the RTVue-100 optical coherence tomography to detect glaucoma. Eye (Lond) 25:57–65CrossRefGoogle Scholar
  19. 19.
    Yang Z, Tatham AJ, Zangwill LM et al (2015) Diagnostic ability of retinal nerve fiber layer imaging by swept source optical coherence tomography in glaucoma. Am J Ophthalmol 159:193–201CrossRefGoogle Scholar
  20. 20.
    Sung KR, Wollstein G, Kim NR et al (2012) Macular assessment using optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol 96:1452–1455CrossRefGoogle Scholar
  21. 21.
    Loduca AL, Zhang C, Zelkha R, Shahidi M (2010) Thickness mapping of retinal layers by spectral-domain optical coherence tomography. Am J Ophthalmol 150:849–855CrossRefGoogle Scholar
  22. 22.
    Ishikawa H, Stein DM, Wollstein G et al (2005) Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci 46:2012–2017CrossRefGoogle Scholar
  23. 23.
    Kardon RH (2011) Role of the macular optical coherence tomography scan neuro-ophthalmology. J Neuroophthalmol 31:353–361CrossRefGoogle Scholar
  24. 24.
    Drance S, Anderson DR, Schulzer M (2001) Collaborative Normal-Tension Glaucoma Study Group. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol 131:699–708CrossRefGoogle Scholar
  25. 25.
    Phelps CD, Corbett JJ (1985) Migraine and low tension glaucoma. A case control study. Invest Ophthalmol Vis Sci 26:1105–1108PubMedGoogle Scholar
  26. 26.
    Kara SA, Erdemoğlu AK, Karadeniz MY, Altınok D (2003) Color Doppler sonography of orbital and vertebral arteries in migraineurs without aura. J Clin Ultrasound 31:308–314CrossRefGoogle Scholar
  27. 27.
    Tan FU, Akarsu C, Güllü R (2005) Retinal nerve fiber layer thickness is unaffected in migraine patients. Acta Neurol Scand 112:19–23CrossRefGoogle Scholar
  28. 28.
    Martinez A, Proupim N, Sanchez M (2008) Retinal nerve fiber layer thickness measurements using optical coherence tomography in migraine patients. Br J Ophthalmol 92:1069–1075CrossRefGoogle Scholar
  29. 29.
    Gipponi S, Scaroni N, Venturelli E et al (2013) Reduction in retinal nerve fiber layer thickness in migraine patients. Neurol Sci 34:841–845CrossRefGoogle Scholar
  30. 30.
    Yülek E, Dirik EB, Eren Y et al (2015) Macula and retinal nerve fiber layer in migraine patients: analysis by spectral domain optic coherence tomography. Semin Ophthalmol 30:124–128CrossRefGoogle Scholar
  31. 31.
    Reggio E, Chisari CG, Ferrigno G et al (2017) Migraine causes retinal and choroidal structural changes: evaluation with ocular coherence tomography. J Neurol 26:494–502CrossRefGoogle Scholar
  32. 32.
    Tunç A, Güngen BD, Evliyaoğlu F et al (2017) Evaluation of retinal nerve fiber layer, ganglion cell layer, and macular changes in patients with migraine. Acta Neurol Belg 117:121–129CrossRefGoogle Scholar
  33. 33.
    Sorkhabi R, Mostafaei S, Ahoor M, Talebi M (2013) Evaluation of retinal nerve fiber layer thickness in migraine. Iran J Neurol 12:51–55PubMedPubMedCentralGoogle Scholar
  34. 34.
    Çolak HN, Kantarcı FA, Tatar MG et al (2016) Retinal nerve fiber layer, ganglion cell complex, choroidal thickness in migraine. Arq Bras Ophthalmol 79:78–81Google Scholar
  35. 35.
    Güneş A, Demirci S, Tok L et al (2016) Is retinal nerve fiber layer thickness change related to headache lateralization in migraine? Korean J Ophthalmol 30:134–139CrossRefGoogle Scholar
  36. 36.
    Ekinci M, Ceylan E, Çağatay HH et al (2014) Retinal nerve fiber layer, ganglion cell layer and choroid thinning in migraine with aura. BMC Ophthalmol 14:75. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ascaso FJ, Marco S, Mateo J et al (2017) Optical coherence tomography in patients with chronic migraine: literature review and update. Front Neurol 8:684. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zengin MO, Elmas Z, Çınar E, Küçükerdönmez C (2015) Choroidal thickness changes in patients with migraine. Acta Neurol Belg 115:33–37CrossRefGoogle Scholar
  39. 39.
    Karaca EE, Koçer EB, Özdek Ş et al (2016) Choroidal thickness measurements in migraine patients during attack-free period. Neurol Sci 37:81–88CrossRefGoogle Scholar
  40. 40.
    Dadacı Z, Doğanay F, Öncel Acır N et al (2014) Enhanced depth imaging optical coherence tomography of the choroid in migraine patients: implications for the association of migraine and glaucoma. Br J Ophthalmol 98:972–975CrossRefGoogle Scholar
  41. 41.
    Karalezli A, Şimşek C, Çelik G, Eroğlu FC (2014) Evaluation of choroidal thickness using spectral-domain optical coherence tomography in migraine patients during acute migraine attacks: a comparative study. Eye (Lond) 28:1477–1481CrossRefGoogle Scholar

Copyright information

© Belgian Neurological Society 2018

Authors and Affiliations

  1. 1.Department of OphthalmologyKeçiören Training and Research HospitalAnkaraTurkey
  2. 2.Department of NeurologyKeçiören Training and Research HospitalAnkaraTurkey

Personalised recommendations