Advertisement

Acta Neurologica Belgica

, Volume 119, Issue 1, pp 113–116 | Cite as

Long-term treatment with rotigotine in drug-naïve PSP patients

  • Tommaso SchirinziEmail author
  • Valerio Pisani
  • Paola Imbriani
  • Giulia Di Lazzaro
  • Simona Scalise
  • Antonio Pisani
Original Article
  • 103 Downloads

Abstract

Progressive supranuclear palsy (PSP) is a severe neurodegenerative disease still lacking of alleviating treatments for either cognitive or motor disturbances. Aimed at widening the spectrum of therapeutic options, here, we describe efficacy and safety of a long-term treatment with Rotigotine, a non-ergolinic dopamine agonist, in PSP. Seven PSP drug-naïve patients, presenting with Richardson’s syndrome, received up to 6 mg/24 h transdermal patch for 42 weeks as unique therapy. Adverse effects were recorded; efficacy was measured by comparing baseline and final treatment scores of Montreal Cognitive Assessment (MoCA), Unified Parkinson Disease Rating Scale part3, and PSP rating scale (PSP-RS). At the end of our observation, no significant adverse events occurred; the cognitive item of PSP-RS was improved and MoCA score was similar at baseline. Contrariwise, motor disturbances worsened according to disease progression. Our observation thus suggests that long-term treatment with low doses of rotigotine is well tolerated and may support cognitive functions of PSP patients.

Keywords

PSP Progressive supranuclear palsy Dementia Parkinsonism Rotigotine 

Notes

Funding

No funding has been received for this study.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Ethical standards

The study was conducted according with institutional ethical standards and the Helsinki declaration.

Informed consent

All participants signed an informed consent.

References

  1. 1.
    Litvan I, Kong M (2014) Rate of decline in progressive supranuclear palsy. Mov Disord 29:463–468.  https://doi.org/10.1002/mds.25843 CrossRefGoogle Scholar
  2. 2.
    Schirinzi T, Di Lazzaro G, Colona VL et al (2017) Assessment of serum uric acid as risk factor for tauopathies. J Neural Transm.  https://doi.org/10.1007/s00702-017-1743-6 Google Scholar
  3. 3.
    Williams DR, Lees AJ (2009) Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol 8:270–279.  https://doi.org/10.1016/S1474-4422(09)70042-0 CrossRefGoogle Scholar
  4. 4.
    Schirinzi T, Sancesario GM, Di Lazzaro G et al (2018) Clinical value of CSF amyloid-beta-42 and tau proteins in progressive supranuclear palsy. J Neural Transm.  https://doi.org/10.1007/s00702-018-1893-1 Google Scholar
  5. 5.
    Respondek G, Stamelou M, Kurz C et al (2014) The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov Disord 29:1758–1766.  https://doi.org/10.1002/mds.26054 CrossRefGoogle Scholar
  6. 6.
    Schirinzi T, Sancesario GM, Ialongo C et al (2015) A clinical and biochemical analysis in the differential diagnosis of idiopathic normal pressure hydrocephalus. Front Neurol 6:86.  https://doi.org/10.3389/fneur.2015.00086 CrossRefGoogle Scholar
  7. 7.
    Lamb R, Rohrer JD, Lees AJ, Morris HR (2016) Progressive supranuclear palsy and corticobasal degeneration: pathophysiology and treatment options. Curr Treat Options Neurol 18:42.  https://doi.org/10.1007/s11940-016-0422-5 CrossRefGoogle Scholar
  8. 8.
    Constantinescu R, Richard I, Kurlan R (2007) Levodopa responsiveness in disorders with parkinsonism: a review of the literature. Mov Disord 22:2141–2148.  https://doi.org/10.1002/mds.21578 CrossRefGoogle Scholar
  9. 9.
    Nuebling G, Hensler M, Paul S et al (2016) PROSPERA: a randomized, controlled trial evaluating rasagiline in progressive supranuclear palsy. J Neurol 263:1565–1574.  https://doi.org/10.1007/s00415-016-8169-1 CrossRefGoogle Scholar
  10. 10.
    Eschlböck S, Krismer F, Wenning GK (2016) Interventional trials in atypical parkinsonism. Parkinsonism Relat Disord 22(Suppl 1):S82–S92.  https://doi.org/10.1016/j.parkreldis.2015.09.038 CrossRefGoogle Scholar
  11. 11.
    Murphy KE, Karaconji T, Hardman CD, Halliday GM (2008) Excessive dopamine neuron loss in progressive supranuclear palsy. Mov Disord 23:607–610.  https://doi.org/10.1002/mds.21907 CrossRefGoogle Scholar
  12. 12.
    Elshoff J-P, Braun M, Andreas J-O et al (2012) Steady-state plasma concentration profile of transdermal rotigotine: an integrated analysis of three, open-label, randomized, phase I multiple dose studies. Clin Ther 34:966–978.  https://doi.org/10.1016/j.clinthera.2012.02.008 CrossRefGoogle Scholar
  13. 13.
    Ray Chaudhuri K, Martinez-Martin P, Antonini A et al (2013) Rotigotine and specific non-motor symptoms of Parkinson’s disease: post hoc analysis of RECOVER. Parkinsonism Relat Disord 19:660–665.  https://doi.org/10.1016/j.parkreldis.2013.02.018 CrossRefGoogle Scholar
  14. 14.
    Schirinzi T, Imbriani P, Elia AD et al (2017) Rotigotine may control drooling in patients with Parkinson’ s disease: preliminary findings. Clin Neurol Neurosurg 156:63–65.  https://doi.org/10.1016/j.clineuro.2017.03.012 CrossRefGoogle Scholar
  15. 15.
    Moretti DV, Binetti G, Zanetti O, Frisoni GB (2014) Behavioral and neurophysiological effects of transdermal rotigotine in atypical parkinsonism. Front Neurol 5:85.  https://doi.org/10.3389/fneur.2014.00085 CrossRefGoogle Scholar
  16. 16.
    Moccia M, Picillo M, Erro R et al (2015) Diagnosis and treatment of restless legs syndrome in progressive supranuclear palsy. J Neurol Sci 350:103–104.  https://doi.org/10.1016/j.jns.2015.01.025 CrossRefGoogle Scholar
  17. 17.
    Moretti DV, Binetti G, Zanetti O, Frisoni GB (2014) Rotigotine is safe and efficacious in atypical Parkinsonism syndromes induced by both α-synucleinopathy and tauopathy. Neuropsychiatr Dis Treat 10:1003–1009.  https://doi.org/10.2147/NDT.S64015 CrossRefGoogle Scholar
  18. 18.
    Litvan I, Agid Y, Jankovic J et al (1996) Accuracy of clinical criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome). Neurology 46:922–930CrossRefGoogle Scholar
  19. 19.
    Höglinger GU, Respondek G, Stamelou M et al (2017) Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 32:853–864.  https://doi.org/10.1002/mds.26987 CrossRefGoogle Scholar
  20. 20.
    Golbe LI, Ohman-Strickland PA (2007) A clinical rating scale for progressive supranuclear palsy. Brain 130:1552–1565CrossRefGoogle Scholar
  21. 21.
    Hoops S, Nazem S, Siderowf AD et al (2009) Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology 73:1738–1745.  https://doi.org/10.1212/WNL.0b013e3181c34b47 CrossRefGoogle Scholar
  22. 22.
    Fiorenzato E, Weis L, Falup-Pecurariu C et al (2016) Montreal cognitive assessment (MoCA) and mini-mental state examination (MMSE) performance in progressive supranuclear palsy and multiple system atrophy. J Neural Transm 123:1435–1442.  https://doi.org/10.1007/s00702-016-1589-3 CrossRefGoogle Scholar
  23. 23.
    Golbe LI (2014) Progressive supranuclear palsy. Semin Neurol 34:151–159.  https://doi.org/10.1055/s-0034-1381736 CrossRefGoogle Scholar
  24. 24.
    Lagarde J, Valabrègue R, Corvol JC et al (2013) Are frontal cognitive and atrophy patterns different in PSP and bvFTD? A comparative neuropsychological and VBM study. PLoS One 8:1–10.  https://doi.org/10.1371/journal.pone.0080353 CrossRefGoogle Scholar
  25. 25.
    Brenneis C, Seppi K, Schocke M et al (2004) Voxel based morphometry reveals a distinct pattern of frontal atrophy in progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 75:246–249Google Scholar
  26. 26.
    Ott T, Nieder A (2016) Dopamine D2 receptors enhance population dynamics in primate prefrontal working memory circuits. Cereb Cortex.  https://doi.org/10.1093/cercor/bhw244 Google Scholar
  27. 27.
    Martorana A, Di Lorenzo F, Esposito Z et al (2013) Dopamine D2-agonist Rotigotine effects on cortical excitability and central cholinergic transmission in Alzheimer’s disease patients. Neuropharmacology 64:108–113.  https://doi.org/10.1016/j.neuropharm.2012.07.015 CrossRefGoogle Scholar
  28. 28.
    Schirinzi T, Madeo G, Martella G et al (2016) Early synaptic dysfunction in Parkinson’s disease: insights from animal models. Mov Disord 31:802–813.  https://doi.org/10.1002/mds.26620 CrossRefGoogle Scholar

Copyright information

© Belgian Neurological Society 2018

Authors and Affiliations

  1. 1.Department of Systems MedicineUniversity of Roma Tor VergataRomeItaly
  2. 2.Department of NeurosciencesIRCCS Bambino Gesù Children HospitalRomeItaly
  3. 3.IRCCS Fondazione Santa LuciaRomeItaly

Personalised recommendations