Biological Theory

, Volume 14, Issue 1, pp 42–51 | Cite as

Agonism Management Through Agonistic Vocal Signaling in Subterranean Rodents: A Neglected Factor Facilitating Sociality?

  • Gabriel FrancescoliEmail author
  • Cristian Schleich
Original Article


Communication is inherent to social relationships. Previous papers addressed the correlation between social and communicative complexity, and the origin of sociality in rodents. In subterranean social species, as the number of animals in the same burrow increases, so do interindividual contact rates. This is because of limitations in actually used tunnel length and diameter, leading to an increasing number of agonistic situations probably resulting in time loss, threatening, and fighting with danger of injuries. To avoid this, social species are expected to have an increase in the number of particular vocalizations. Comparison of the adult vocal repertoire of 12 species (seven genera) through regression and phylogenetically independent contrasts (PIC) suggests three main conclusions: (1) social species increase their repertoire both in number and categories of vocal signals in relation to solitary species, although the coefficient was smaller in the PIC model; (2) the number of agonistic vocalizations was also different between solitary and social species, with the latter displaying higher numbers of these calls; (3) the percentage of agonistic vocalizations in relation to total repertoire was similar between social and solitary species, with no significant relationship between this parameter and the social structure. These results imply that agonistic vocalizations have also increased in number in social species, indicating the importance of these calls in the establishment of new relationships. As repertoire changes are essential to cope with new and frequent kinds of interactions sociality originates, these results suggest that at least for these organisms, communicative changes, especially at the level of agonistic signals, could be a necessary condition to fulfill in the path to the possibility of group living.


Agonistic signals Communicative complexity Social complexity Sociality evolution Subterranean rodents 



GF wants to thank CSIC (Universidad de la República, Uruguay) for support through the Dedicación Total program and ANII (Uruguay) for support through the Sistema Nacional de Investigadores program.


  1. Altuna CA, Francescoli G, Tassino B, Izquierdo G (1999) Ecoetología y conservación de mamíferos subterráneos de distribución restringida: el caso de Ctenomys pearsoni (Rodentia, Octodontidae) en el Uruguay. Etología 7:47–54Google Scholar
  2. Avilés L (1999) Cooperation and non-linear dynamics: an ecological perspective on the evolution of sociality. Evol Ecol Res 1:459–477Google Scholar
  3. Barbieri M (2008) What is Biosemiotics? Biosemiotics 1:1–3CrossRefGoogle Scholar
  4. Bednářová R, Hrouzková-Knotková E, Burda H et al (2013) Vocalizations of the giant mole-rat (Fukomys mechowii), a subterranean rodent with the richest vocal repertoire. Bioacoustics 22:87–107CrossRefGoogle Scholar
  5. Bekoff M (1977) Mammalian dispersal and the ontogeny of individual behavioral phenotypes. Am Nat 111:715–732CrossRefGoogle Scholar
  6. Bekoff M (1981) Development of agonistic behaviour: ethological and ecological aspect. In: Brain PF, Benton D (eds) Multidisciplinary approaches to aggression research. Elsevier, Amsterdam, pp 161–178Google Scholar
  7. Bekoff M, Byers JA (1986) The development of behavior from evolutionary and ecological perspectives in mammals and birds. In: Hecht M, Wallace B, Prance GT (eds) Evolutionary biology, (vol 19). Plenum Press, Boston, pp 215–286Google Scholar
  8. Bennett NC, Faulkes CG, Molteno AJ (2000) Reproduction in subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life underground. The biology of subterranean rodents. University of Chicago Press, Chicago, pp 145–177Google Scholar
  9. Blumstein DT (2003) Social complexity but not the acoustic environment is responsible for the evolution of complex alarm communication. In: Ramousse R, Allainé D, Le Berre M (eds) Adaptive strategies and diversity in marmots. International Network on Marmots, Villeurbanne, pp 31–38Google Scholar
  10. Blumstein DT (2007) The evolution of alarm communication in rodents: structure, function, and the puzzle of apparently altruistic calling. In: Wolff JO, Sherman PW (eds) Rodent societies. University of Chicago Press, Chicago, pp 317–327Google Scholar
  11. Blumstein DT, Armitage KB (1997) Does sociality drive the evolution of communicative complexity? A comparative test with ground-dwelling sciurid alarm calls. Am Nat 150:179–200CrossRefGoogle Scholar
  12. Blumstein DT, Armitage KB (1998) Life history consequences of social complexity: a comparative study of ground-dwelling sciurids. Behav Ecol 9:8–19CrossRefGoogle Scholar
  13. Blumstein DT, Wey TW, Tang K (2009) A test of the social cohesion hypothesis: interactive female marmots remain at home. Proc R Soc Lond B 276:3007–3012CrossRefGoogle Scholar
  14. Bouchet H, Blois-Heulin C, Lemasson A (2013) Social complexity parallels vocal complexity: a comparison of three non-human primate species. Front Psychol. Google Scholar
  15. Burda H (1989) Relationships among rodent taxa, as indicated by reproductive biology. J Zool Syst Evol Res 27:49–50CrossRefGoogle Scholar
  16. Burda H, Kawalika M (1993) Evolution of eusociality in the Bathyergidae: the case of the giant mole-rat (Cryptomys mechowi). Naturwissenschaften 80:235–237CrossRefGoogle Scholar
  17. Burda H, Honeycutt RL, Begall S et al (2000) Are naked and common mole-rats eusocial and if so, why? Behav Ecol Sociobiol 47:293–303CrossRefGoogle Scholar
  18. Busch C, Antinuchi CD, del Valle JC et al (2000) Spatial and social systems of subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life underground: the biology of subterranean rodents. University of Chicago Press, Chicago, pp 183–226Google Scholar
  19. Credner S, Burda H, Ludescher F (1997) Acoustic communication underground: vocalization characteristics in subterranean social mole-rats (Cryptomys sp., Bathyergidae). J Comp Physiol A 180:245–255CrossRefGoogle Scholar
  20. Cutrera AP, Antinuchi CD, Busch C (2003) Thermoregulatory development in pups of the subterranean rodent Ctenomys talarum. Physiol Behav 79:321–330CrossRefGoogle Scholar
  21. Daniel JC, Blumstein DT (1998) A test of the acoustic adaptation hypothesis in four species of marmots. Anim Behav 56:1517–1528CrossRefGoogle Scholar
  22. DeVries MS, Sykes RS (2008) Vocalisations of a North American subterranean rodent Geomys breviceps. Bioacoustics 18:1–15CrossRefGoogle Scholar
  23. Donaldson ZR, Young LJ (2008) Oxytcin, vasopressin, and the neurgenetics of sociality. Science 332:900–904CrossRefGoogle Scholar
  24. Dvořáková V, Hrouzková E, Šumbera R (2016) Vocal repertoire of the Mashona mole-rat (Fukomys darlingi) and how it compares with other mole-rats. Bioacoustics. Google Scholar
  25. Ebensperger LA (1998) Sociality in rodents: the New World fossorial hystricognaths as study models. Rev Chil Hist Nat 71:65–77Google Scholar
  26. Ebensperger LA (2001) A review of the evolutionary causes of rodent group-living. Acta Theriol 46:115–144CrossRefGoogle Scholar
  27. Ebensperger LA (2003) Restricciones fisiológicas y evolución de la sociabilidad en roedores. In: Bozinovic F (ed) Fisiología ecológica y evolutiva. Ediciones Universidad Católica de Chile, Santiago, pp 463–480Google Scholar
  28. Ebensperger LA, Blumstein DT (2006) Sociality in New World hystricognath rodents is linked to predators and burrow digging. Behav Ecol 17:410–418CrossRefGoogle Scholar
  29. Ebensperger LA, Cofré H (2001) On the evolution of group-living in the New World cursorial hystricognath rodents. Behav Ecol 12:227–236CrossRefGoogle Scholar
  30. Ebensperger LA, Hayes LD (2008) On the dynamics of rodent social groups. Behav Process 79:85–92CrossRefGoogle Scholar
  31. Faulkes CG, Bennett NC (2013) Plasticity and constraints on social evolution in African mole-rats: ultimate and proximate factors. Phil Trans R Soc B 368:20120347CrossRefGoogle Scholar
  32. Feigel A (2008) Essential conditions for evolution of communication within species. J Theor Biol 254:768–774CrossRefGoogle Scholar
  33. Francescoli G (1999) A preliminary report on the acoustic communication in uruguayan Ctenomys (Rodentia, Octodontidae): basic sound types. Bioacoustics 10:203–218CrossRefGoogle Scholar
  34. Freeberg TM (2006) Social complexity can drive vocal complexity? Group size influences vocal information in Carolina Chickadees. Psychol Sci 17:557–561CrossRefGoogle Scholar
  35. Freeberg TM, Dunbar RIM, Ord TJ (2012) Social complexity as a proximate and ultimate factor in communicative complexity. Phil Trans R Soc B 367:1785–1801CrossRefGoogle Scholar
  36. Ganem G, Bennett NC (2004) Tolerance to unfamiliar conspecifics varies with social organization in female African mole-rats. Physiol Behav 82:555–562CrossRefGoogle Scholar
  37. Ganem G, Nevo E (1996) Ecophysiological constraints associated with aggression and evolution toward pacifism in Spalax ehrenbergi. Behav Ecol Sociobiol 38:245–252CrossRefGoogle Scholar
  38. García Montero A, Vole C, Burda H et al (2016) Non-breeding eusocial mole-rats produce viable sperm - spermiogram and functional testicular morphology of. Fukomys anselli PLoS ONE 11(3):e0150112. CrossRefGoogle Scholar
  39. Grafen A (1992) The uniqueness of phylogenetic regression. J Theor Biol 156:405–423CrossRefGoogle Scholar
  40. Gromov VS (2017) The spatial-and-ethological population structure, cooperation, and the evolution of sociality in rodents. Behaviour 154:609–649CrossRefGoogle Scholar
  41. Heth G, Frankenberg E, Nevo E (1988) “Courtship” call of subterranean mole rats (Spalax ehrenbergi): physical analysis. J Mammal 69:121–125CrossRefGoogle Scholar
  42. Izquierdo G, Lacey EA (2008) Effects of group size on nest attendance in the communally breeding colonial tuco-tuco. Mamm Biol 73:438–443CrossRefGoogle Scholar
  43. Jarvis JUM, O’Riain MJ, Bennett NC, Sherman PW (1994) Mammalian eusociality: a family affair. Trends Ecol Evol 9:47–51CrossRefGoogle Scholar
  44. Judd TM, Sherman PW (1996) Naked mole-rats recruit colony mates to food sources. Anim Behav 52:957–969CrossRefGoogle Scholar
  45. Kappeler PM, Barrett L, Blumstein DT, Clutton-Brock TH (2013) Constraints and flexibility in mammalian social behaviour: introduction and synthesis. Philos Trans R Soc B 368:2012.0337CrossRefGoogle Scholar
  46. Kessler SE, Radespiel U, Hasiniaina AIF et al (2014) Modeling the origins of mammalian sociality: moderate evidence for matrilineal signatures in mouse lemur vocalizations. Front Zool. Google Scholar
  47. Knotková E, Veitlm S, Šumbera R et al (2009) Vocalisations of the silvery mole-rat: comparison of vocal repertoires in subterranean rodents with different social systems. Bioacoustics 18:241–257CrossRefGoogle Scholar
  48. Lacey EA (2000) Spatial and social systems of subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life underground: the biology of subterranean rodents. University of Chicago Press, Chicago, pp 257–296Google Scholar
  49. Lacey EA, Sherman PW (2007) The ecology of sociality in rodents. In: Wolff JO, Sherman PW (eds) Rodent societies. University of Chicago Press, Chicago, pp 243–254Google Scholar
  50. Lacey EA, Cuello PA, Tammone MN et al (2015) Estructura social en los tuco-tucos: mucho más variable de lo esperado. In: XXVIII Jornadas Argentinas de Mastozoología, Santa Fé (Argentina), November 2015Google Scholar
  51. Laland K (2014) On evolutionary causes and evolutionary processes. Behav Process. Google Scholar
  52. Laland KN, Odling-Smee J, Gilbert SF (2008) EvoDevo and niche construction: building bridges. J Exp Zool 310B:549–566CrossRefGoogle Scholar
  53. Love OP, McGowan P, Sheriff MJ (2013) Maternal adversity and ecological stressors in natural populations: the role of stress axis programming in individuals, with implications for populations and communities. Funct Ecol 27:81–92CrossRefGoogle Scholar
  54. Luna F, Naya H, Naya DE (2017) Understanding evolutionary variation in basal metabolic rate: analysis in subterranean rodents. Comp Biochem Physiol A 151:87–94CrossRefGoogle Scholar
  55. Malavasi R, Kull K, Farina A (2014) The acoustic codes: how animal sign processes create sound-topes and consortia via conflict avoidance. Biosemiotics. Google Scholar
  56. Nevo E (1979) Adaptive convergence and divergence of subterranean mammals. Annu Rev Ecol Syst 10:269–308CrossRefGoogle Scholar
  57. Nevo E (2007) Evolution of pacifism and sociality in blind mole-rats. In: Wolff JO, Sherman PW (eds) Rodent societies. University of Chicago Press, Chicago, pp 291–302Google Scholar
  58. Ord TJ, García-Porta J (2012) Is sociality required for the evolution of communicative complexity? Evidence weighed against alternative hypotheses in diverse taxonomic groups. Philos Trans R Soc B 367:1811–1828CrossRefGoogle Scholar
  59. Pepper JW, Braude SH, Lacey EA, Sherman PW (1991) Vocalizations of the naked mole-rat. In: Sherman PW, Jarvis JUM, Alexander RD (eds) The biology of the naked mole-rat. Princeton University Press, Princeton, pp 243–274Google Scholar
  60. Peterson T, Müller GB (2016) Phenotypic novelty in EvoDevo: the distinction between continuous and discontinuous variation and its importance in evolutionary theory. Evol Biol 43:314–335CrossRefGoogle Scholar
  61. Pollard KA, Blumstein DT (2012) Evolving communicative complexity: insights from rodents and beyond. Philos Trans R Soc B 367:1869–1878CrossRefGoogle Scholar
  62. Sachser N, Dürschlag M, Hirzel D (1998) Social relationships and the management of stress. Psychoneuroendocrinology 23:891–904CrossRefGoogle Scholar
  63. Schleich CE, Busch C (2002) Acoustic signals of a solitary subterranean rodent Ctenomys talarum (Rodentia: Ctenomyidae): physical characteristics and behavioural correlates. J Ethol 20:123–131CrossRefGoogle Scholar
  64. Schleich CE, Veitl S, Knotková E, Begall S (2007) Acoustic communication in subterranean rodents. In: Begall S, Schleich CE, Burda H (eds) Subterranean rodents: news from underground. Springer, Berlin, pp 113–127CrossRefGoogle Scholar
  65. Scott-Phillips TC, Laland K, Shuker DM et al (2013) The niche construction perspective: a critical appraisal. Evolution 68:1231–1243CrossRefGoogle Scholar
  66. Sichilima AM, Faulkes CG, Bennett NC (2008) Field evidence for a seasonality of reproduction and colony size in the Afrotropical giant mole-rat Fukomys mechowii (Rodentia: Bathyergidae). Afr Ecol 43:144–149Google Scholar
  67. Šklíba J, Mazoch V, Patzenhauerovám H et al (2012) A maze-lovers dream: burrow architecture, natural history and habitat characteristics of Ansell’s mole-rat (Fukomys anselli). Mamm Biol 77:420–427CrossRefGoogle Scholar
  68. Smorkatcheva AV, Lukhtanov VA (2013) Evolutionary association between subterranean lifestyle and female sociality in rodents. Mamm Biol. Google Scholar
  69. Sobrero R, Inostroza-Michael O, Hernández CE, Ebensperger LA (2014) Phylogeny modulates the effects of ecological conditions on group living across hystricognath rodents. Anim Behav 94:27–34CrossRefGoogle Scholar
  70. Sumbera R, Chitaukali WN, Burda H (2007) Biology of the Silvery mole-rat (Heliophobius argenteocinereus). Why study a neglected subterranean rodent species? In: Begall S, Schleich CE, Burda H (eds) Subterranean rodents: news from underground. Springer, Berlin, pp 221–236CrossRefGoogle Scholar
  71. van Veelen M, García J, Avilés L (2010) It takes grouping and cooperation to get sociality. J Theor Biol 264:1240–1253CrossRefGoogle Scholar
  72. Vanden Hole C, Van Daele PAAG, Desmet N et al (2014) Does sociality imply a complex vocal communication system? A case study for Fukomys micklemi (Bathyergidae, Rodentia). Bioacoustics 23:143–160CrossRefGoogle Scholar
  73. Veitl S, Begall S, Burda H (2000) Ecological determinants of vocalisation parameters: the case of the Coruro Spalacopus cyanus (Octodontidae), a fossorial social rodent. Bioacoustics 11:129–148CrossRefGoogle Scholar
  74. Voloch CM, Vilela JF, Loss-Oliveira L, Schrago CG (2013) Phylogeny and chronology of the major lineages of New World hystricognath rodents: insights on the biogeography of he Eocene/Oligocene arrival of mammals in South America. BMC Res Notes. Google Scholar
  75. Walton AH, Nedbal MA, Honeycutt RL (2000) Evidence from intron 1 of the nuclear transthyretin (Prealbumin) gene for the phylogeny of African mole-rats (Bathyergidae). Mol Phylogenet Evol 16:467–474CrossRefGoogle Scholar
  76. White CR (2003) The influence of foraging mode and arid adaptation on the basal metabolic rates of burrowing mammals. Physiol Biochem Zool 76:122–134CrossRefGoogle Scholar
  77. Wilson EO (1980) Sociobiología: la nueva síntesis. Omega, BarcelonaGoogle Scholar
  78. Wolff JO, Sherman PW (2007) Rodent societies as model systems. In: Wolff JO, Sherman PW (eds) Rodent societies. University of Chicago Press, Chicago, pp 3–7CrossRefGoogle Scholar
  79. Yosida S, Okanoya K (2009) Naked mole-rat is sensitive to social hierarchy encoded in antiphonal vocalization. Ethology 115:823–831CrossRefGoogle Scholar
  80. Zuri I, Gottreich A, Terkel J (1998) Social stress in neighbouring and encountering blind mole-rats (Spalax ehrenbergi). Physiol Behav 64:611–620CrossRefGoogle Scholar

Copyright information

© Konrad Lorenz Institute for Evolution and Cognition Research 2018

Authors and Affiliations

  1. 1.Ethology Section, Faculty of SciencesUniversidad de la RepúblicaMontevideoUruguay
  2. 2.IIMyC-Conicet (Institute of Marine and Coastal Research)Universidad Nacional de Mar del PlataMar del PlataArgentina

Personalised recommendations