Advertisement

Progress in Artificial Intelligence

, Volume 8, Issue 1, pp 15–43 | Cite as

A comparative study of the evolutionary many-objective algorithms

  • Haitong Zhao
  • Changsheng ZhangEmail author
  • Jiaxu Ning
  • Bin Zhang
  • Peng Sun
  • Yunfei Feng
Review
  • 50 Downloads

Abstract

The many-objective optimization problem (MaOP) is widespread in real life. It contains multiple conflicting objectives to be optimized. Many evolutionary many-objective (EMaO) algorithms are proposed and developed to solve it. The EMaO algorithms have received extensive attentions and in-depth studies. At the beginning of this paper, the challenges of designing EMaO algorithms are first summarized. Based on the optimization strategies, the existing EMaO algorithms are classified. Characteristics of each class of algorithms are interpreted and compared in detail. Their applicability for different types of MaOPs is discussed. Next, the numerical experiment was implemented to test the performance of typical EMaO algorithms. Their performance is analyzed from the perspectives of solution quality, convergence speed and the approximation of the Pareto front. Performance of different algorithms on different kind of test cases is analyzed, respectively. At last, the researching statuses of existing algorithms are summarized. The future researching directions of the EMaO algorithm are prospected.

Keywords

Evolutionary algorithm Meta-heuristic algorithm Many-objective problem Many-objective optimization 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation Program of China (61572116, 61572117, 61502089) and the Special Fund for Fundamental Research of Central Universities of Northeastern University (N150408001, N161606003).

References

  1. 1.
    Ishibuchi, H., Setoguchi, Y., Masuda, H., et al.: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes. IEEE Trans. Evol. Comput. 21(2), 169–190 (2017)Google Scholar
  2. 2.
    Srinivas, S.N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolut. Comput. 2(3), 221–248 (1994)Google Scholar
  3. 3.
    Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multiobjective optimization. In: IEEE World Congress on Computational Intelligence, Proceedings of the First IEEE Conference on Evolutionary Computation, 1994. IEEE Xplore, vol. 1, pp. 82–87Google Scholar
  4. 4.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)Google Scholar
  5. 5.
    Deb, K., Pratap, A., Agarwal, S., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)Google Scholar
  6. 6.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. In: TIK-Report 103, Computer Engineering and Networks Laboratory (TIK), Department of Electrical Engineering, ETH, Zurich (2001)Google Scholar
  7. 7.
    Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2008)Google Scholar
  8. 8.
    Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans. Evolut. Comput. 18(4), 577–601 (2014)Google Scholar
  9. 9.
    He, Z., Yen, G.G.: Visualization and performance metric in many-objective optimization. IEEE Trans. Evol. Comput. 20(3), 386–402 (2016)Google Scholar
  10. 10.
    Ibrahim, A., Rahnamayan, S., Martin, M.V., et al.: 3D-RadVis: visualization of Pareto front in many-objective optimization. In: Evolutionary Computation. IEEE, 2016Google Scholar
  11. 11.
    Freitas, A.R.R., Silva, R.C.P.: On the visualization of trade-offs and reducibility in many-objective optimization. In: Companion Publication of the Conference on Genetic and Evolutionary Computation. ACM, (2014)Google Scholar
  12. 12.
    Tanigaki, Y., Narukawa, K., Nojima, Y., et al.: Preference-based NSGA-II for many-objective knapsack problems. In: International Symposium on Soft Computing and Intelligent Systems, pp. 637–642. IEEE, (2004)Google Scholar
  13. 13.
    Mohammadi, A., Omidvar, M.N., Li, X., et al.: Integrating user preferences and decomposition methods for many-objective optimization. In: Evolutionary Computation, pp. 421–428. IEEE, (2014)Google Scholar
  14. 14.
    Walker, D.J., Everson, R.M., Fieldsend, J.E.: Visualisation and ordering of many-objective populations. In: IEEE congress on evolutionary computation (CEC), pp. 1–8. IEEE, (2010)Google Scholar
  15. 15.
    Ibrahim, A., Rahnamayan, S., Martin, M.V., et al.: 3D-RadVis: visualization of Pareto front in many-objective optimization. In: IEEE Congress on Evolutionary Computation, pp. 736–745. IEEE, (2016)Google Scholar
  16. 16.
    He, Z., Yen, G.G.: An improved visualization approach in many-objective optimization. In: IEEE Congress on Evolutionary Computation, pp. 1618–1625. IEEE, (2016)Google Scholar
  17. 17.
    Silva, R., Salimi, A., Li, M., et al.: Visualization and analysis of tradeoffs in many-objective optimization: a case study on the interior permanent magnet motor design. IEEE Trans. Magn. 52(3), 1–4 (2016)Google Scholar
  18. 18.
    Jiang, S., Yang, S.: A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization. IEEE Trans. Evolut. Comput. 21(3), 329–346 (2017)Google Scholar
  19. 19.
    Cheng, R., Jin, Y., Olhofer, M., et al.: A reference vector guided evolutionary algorithm for many-objective optimization. In: IEEE Transactions on Evolutionary Computation, (2016)Google Scholar
  20. 20.
    Asafuddoula, M., Ray, T., Sarker, R.: A decomposition-based evolutionary algorithm for many objective optimization. IEEE Trans. Evol. Comput. 19(3), 445–460 (2014)zbMATHGoogle Scholar
  21. 21.
    Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Comput. 18(3), 450–455 (2014)Google Scholar
  22. 22.
    Britto, A., Mostaghim, S., Pozo, A.: Archive based multi-swarm algorithm for many-objective problems. In: 2014 Brazilian Conference on Intelligent Systems (BRACIS), pp. 79–84. IEEE, (2014)Google Scholar
  23. 23.
    Cai, X., Li, Y., Fan, Z., et al.: An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Trans. Evol. Comput. 19(4), 508–523 (2015)Google Scholar
  24. 24.
    Yuan, Y., Xu, H., Wang, B., et al.: Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans. Evolut. Comput. 20(2), 180–198 (2016)Google Scholar
  25. 25.
    Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evolut. Comput. 19(6), 761–776 (2014)Google Scholar
  26. 26.
    Zou, J., Fu, L., Zheng, J., et al.: A many-objective evolutionary algorithm based on rotated grid. Appl. Soft Comput. 67, 596–609 (2018)Google Scholar
  27. 27.
    Yang, S., Li, M., Liu, X., et al.: A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evolut. Comput. 17(5), 721–736 (2013)Google Scholar
  28. 28.
    Qi, Y., Ma, X., Liu, F., et al.: Moea/d with adaptive weight adjustment. Evolut. Comput. 22(2), 231–264 (2014)Google Scholar
  29. 29.
    Liu, H.L., Chen, L., Zhang, Q., et al.: An evolutionary many-objective optimisation algorithm with adaptive region decomposition. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4763–4769. IEEE, (2016)Google Scholar
  30. 30.
    Cai, X., Yang, Z., Fan, Z., et al.: Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization. IEEE Trans. Cybern. 47(9), 2824–2837 (2017)Google Scholar
  31. 31.
    He, Z., Yen, G.G.: Diversity improvement in decomposition-based multi-objective evolutionary algorithm for many-objective optimization problems. In: 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 2409–2414. IEEE, (2014)Google Scholar
  32. 32.
    Zhu, C., Cai, X., Fan, Z., et al.: A two-phase many-objective evolutionary algorithm with penalty based adjustment for reference lines. In: IEEE Congress on Evolutionary Computation, pp. 2161–2168. IEEE, (2016)Google Scholar
  33. 33.
    Chugh, T., Jin, Y., Miettinen, K., et al.: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization. IEEE Trans. Evolut. Comput. 22(1), 129–142 (2018)Google Scholar
  34. 34.
    Zhou, C., Dai, G., Zhang, C., et al.: Entropy based evolutionary algorithm with adaptive reference points for many-objective optimization problems. Inf. Sci. 465, 232–247 (2018)MathSciNetGoogle Scholar
  35. 35.
    Wu, M., Li, K., Kwong, S., et al.: Matching-based selection with incomplete lists for decomposition multi-objective optimization. IEEE Trans. Evolut. Comput. 21, 554–568 (2017)Google Scholar
  36. 36.
    He, Z., Yen, G.G.: Many-objective evolutionary algorithms based on coordinated selection strategy. IEEE Trans. Evolut. Comput. 21(2), 220–233 (2017)Google Scholar
  37. 37.
    Li, K., Deb, K., Zhang, Q., et al.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evolut. Comput. 19(5), 694–716 (2015)Google Scholar
  38. 38.
    Ray, T., Asafuddoula, M., Isaacs, A.A.: Steady state decomposition based quantum genetic algorithm for many objective optimization. In: Evolutionary Computation, pp. 2817–2824. IEEE, (2013)Google Scholar
  39. 39.
    Laumanns, M., Thiele, L., Deb, K., et al.: Combining convergence and diversity in evolutionary multiobjective optimization. Evolut. Comput. 10(3), 263–282 (2002)Google Scholar
  40. 40.
    Sato, H., Aguirre, H.E., Tanaka, K.: Self-controlling dominance area of solutions in evolutionary many-objective optimization. Lect. Notes Comput. Sci. 6457(2), 455–465 (2010)Google Scholar
  41. 41.
    Li, M., Zheng, J., Shen, R., et al.: A grid-based fitness strategy for evolutionary many-objective optimization. In: Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2010, Portland, Oregon, USA, pp. 463–470. (2010)Google Scholar
  42. 42.
    Pierro, F.D., Khu, S.T., Savic, D.A.: An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Trans. Evolut. Comput. 11(1), 17–45 (2007)Google Scholar
  43. 43.
    Farina, M., Amato, P.: A fuzzy definition of optimality for many-criteria optimization problems. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum 34(3), 315–326 (2004)Google Scholar
  44. 44.
    He, Z., Yen, G.G., Zhang, J.: Fuzzy-based pareto optimality for many-objective evolutionary algorithms. IEEE Trans. Evolut. Comput. 18(2), 269–285 (2014)Google Scholar
  45. 45.
    Li, M., Zheng, J., Li, K., et al.: Enhancing diversity for average ranking method in evolutionary many-objective optimization. In: Parallel Problem Solving from Nature, PPSN XI, pp. 647–656. Springer, Berlin (2010)Google Scholar
  46. 46.
    Zou, X., Chen, Y., Liu, M., et al.: A new evolutionary algorithm for solving many-objective optimization problems. IEEE Trans. Syst. Man Cybern. Part B Cybern. Publ. IEEE Syst. Man Cybern. Soc. 38(5), 1402–1412 (2008)Google Scholar
  47. 47.
    Kukkonen, S., Lampinen, J.: Ranking-dominance and many-objective optimization. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 3983–3990. IEEE, (2007)Google Scholar
  48. 48.
    Yuan, Y., Xu, H., Wang, B., et al.: A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evolut. Comput. 20(1), 16–37 (2016)Google Scholar
  49. 49.
    Gong, D.W., Sun, J., Miao, Z.: A set-based genetic algorithm for interval many-objective optimization problems. IEEE Trans. Evolut. Comput. 99, 1 (2016)Google Scholar
  50. 50.
    Deb, K., Pratap, A., Agarwal, S., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)Google Scholar
  51. 51.
    Deb, K., Jain, H.: Handling many-objective problems using an improved NSGA-II procedure. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE, (2012)Google Scholar
  52. 52.
    Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Opt. 8(3), 631–657 (2000)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Seada, H., Deb, K.: U-NSGA-III: a unified evolutionary optimization procedure for single, multiple, and many objectives: proof-of-principle results. In: International Conference on Evolutionary Multi-Criterion Optimization, pp. 34–49. Springer, Cham, (2015)Google Scholar
  54. 54.
    Li, B., Li, J., Tang, K., et al.: An improved two archive algorithm for many-objective optimization. IEEE Trans. Evolut. Comput. 19(4), 524–541 (2015)Google Scholar
  55. 55.
    Zhao, H., Xiao, J.: A new many-objective evolutionary algorithm based on self-adaptive differential evolution. In: Ninth International Conference on Natural Computation, pp. 601–605. IEEE, (2013)Google Scholar
  56. 56.
    Cheng, J., Yen, G.G., Zhang, G.: A many-objective evolutionary algorithm with enhanced mating and environmental selections. IEEE Trans. Evolut. Comput. 19(4), 592–605 (2015)Google Scholar
  57. 57.
    Li, M., Yang, S., Liu, X.: Shift-based density estimation for pareto-based algorithms in many-objective optimization. IEEE Trans. Evolut. Comput. 18(3), 348–365 (2014)Google Scholar
  58. 58.
    Elarbi, M., Bechikh, S., Gupta, A., et al.: A new decomposition-based NSGA-II for many-objective optimization. IEEE Trans. Syst. Man. Cybern. Syst. 48(7), 1191–1210 (2018)Google Scholar
  59. 59.
    Tanigaki, Y., Narukawa, K., Nojima, Y., et al.: Preference-based NSGA-II for many-objective knapsack problems. In: 15th International Symposium on Soft Computing and Intelligent Systems (SCIS), 2014 Joint 7th International Conference on and Advanced Intelligent Systems (ISIS), pp. 637–642. IEEE, (2014)Google Scholar
  60. 60.
    Bandyopadhyay, S., Mukherjee, A.: An Algorithm for many-objective optimization with reduced objective computations: a study in differential evolution. IEEE Trans. Evolut. Comput. 19(3), 400–413 (2015)Google Scholar
  61. 61.
    Murata, T., Taki, A.: Examination of the performance of objective reduction using correlation-based weighted-sum for many objective knapsack problems. In: International Conference on Hybrid Intelligent Systems, pp. 175–180. IEEE, (2010)Google Scholar
  62. 62.
    Guo, X., Wang, X., Wang, M., et al.: A new objective reduction algorithm for many-objective problems: employing mutual information and clustering algorithm. In: Eighth International Conference on Computational Intelligence and Security, pp. 11–16. IEEE, (2012)Google Scholar
  63. 63.
    Saxena, D.K., Duro, J.A., Tiwari, A., et al.: Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans. Evolut. Comput. 17(1), 77–99 (2013)Google Scholar
  64. 64.
    Freitas, A.R.R., Fleming, P.J., Guimaraes, F.G.: A non-parametric harmony-based objective reduction method for many-objective optimization. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 651–656, IEEE, (2013)Google Scholar
  65. 65.
    Pal, M., Saha, S., Bandyopadhyay, S.: Clustering based online automatic objective reduction to aid many-objective optimization. In: IEEE Congress on Evolutionary Computation, pp. 1131–1138. IEEE, (2016)Google Scholar
  66. 66.
    Li, Y., Liu, H.L., Gu, F. An objective reduction algorithm based on hyperplane approximation for many-objective optimization problems. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2470–2476. IEEE, (2016)Google Scholar
  67. 67.
    Yuan, Y., Ong, Y.S., Gupta, A., et al.: Objective reduction in many-objective optimization: evolutionary multiobjective approaches and comprehensive analysis. IEEE Trans. Evolut. Comput. 22(2), 189–210 (2018)Google Scholar
  68. 68.
    He, Z., Yen, G.G.: Many-objective evolutionary algorithm: objective space reduction and diversity improvement. IEEE Trans. Evolut. Comput. 20(1), 145–160 (2016)Google Scholar
  69. 69.
    Dai, G., Zhou, C., Wang, M., et al.: Indicator and reference points co-guided evolutionary algorithm for many-objective optimization problems. Knowl.-Based Syst. 140, 50–63 (2018)Google Scholar
  70. 70.
    Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evolut. Comput. 19(1), 45–76 (2011)Google Scholar
  71. 71.
    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)zbMATHGoogle Scholar
  72. 72.
    Yuan, Y., Xu, H., Wang, B.: Evolutionary many-objective optimization using ensemble fitness ranking. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 669–676. ACM, (2014)Google Scholar
  73. 73.
    Xiao, J., Wang, K.: Ranking-based elitist differential evolution for many-objective optimization. In: 2013 5th International Conference on Intelligent Human–Machine Systems and Cybernetics (IHMSC), vol. 1, pp. 310–313. IEEE, (2013)Google Scholar
  74. 74.
    Li, B., Tang, K., Li, J., et al.: Stochastic ranking algorithm for many-objective optimization based on multiple indicators. IEEE Trans. Evolut. Comput. 20(6), 924–938 (2016)Google Scholar
  75. 75.
    Li, F., Liu, J., Tan, S., et al.: R2-mopso: a multi-objective particle swarm optimizer based on r2-indicator and decomposition. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 3148–3155. IEEE, (2015)Google Scholar
  76. 76.
    Gómez, R.H., Coello, C.A.C.: MOMBI: a new metaheuristic for many-objective optimization based on the R2 indicator. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2488–2495. IEEE, (2013)Google Scholar
  77. 77.
    Díaz-Manríquez, A., Toscano-Pulido, G., Coello, C.A.C., et al.: A ranking method based on the R2 indicator for many-objective optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1523–1530. IEEE, (2013)Google Scholar
  78. 78.
    Deb, K., Thiele, L., Laumanns, M., et al.: Scalable test problems for evolutionary multiobjective optimization. In: Evolutionary Multiobjective Optimization, pp. 105–145, (2006)Google Scholar
  79. 79.
    Huband, S., Hingston, P., Barone, L., et al.: A review of multiobjective test problems and a scalable test problem toolkit. Evolut. Comput. IEEE Trans. 10(5), 477–506 (2006)Google Scholar
  80. 80.
    Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: International Conference on Parallel Problem Solving from Nature, pp. 832–842. Springer, Berlin, (2004)Google Scholar
  81. 81.
    Deb, K., Mohan, M., Mishra, S.: A fast multi-objective evolutionary algorithm for finding well-spread pareto-optimal solutions. KanGAL Rep. 2003002, 1–18 (2003)Google Scholar
  82. 82.
    Ishibuchi, H., Masuda, H., Tanigaki, Y., et al.: Difficulties in specifying reference points to calculate the inverted generational distance for many-objective optimization problems. In: IEEE, pp. 170–177 (2015)Google Scholar
  83. 83.
    Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC ‘02, pp. 711–716. IEEE, (2002)Google Scholar
  84. 84.
    Ishibuchi, H., Masuda, H., Nojima, Y.: A study on performance evaluation ability of a modified inverted generational distance indicator. In: Conference on Genetic and Evolutionary Computation, pp. 695–702. IEEE, (2015)Google Scholar
  85. 85.
    Williamson, D.F., Parker, R.A., Kendrick, J.S.: The box plot: a simple visual method to interpret data. Ann. Intern. Med. 110(11), 916–921 (1989)Google Scholar
  86. 86.
    Richtárik, P., Takáč, M.: Parallel coordinate descent methods for big data optimization. Math. Program. 156(1–2), 433–484 (2016)MathSciNetzbMATHGoogle Scholar
  87. 87.
    Jones, J.J.: Earnings management during import relief investigations. J. Account. Res. 29(2), 193–228 (1991)MathSciNetGoogle Scholar
  88. 88.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetzbMATHGoogle Scholar
  89. 89.
    Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. Tik Rep. 214, 327–332 (2006)Google Scholar
  90. 90.
    García, S., Molina, D., Lozano, M., et al.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J. Heuristics 15(6), 617 (2009)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Haitong Zhao
    • 1
  • Changsheng Zhang
    • 1
    Email author
  • Jiaxu Ning
    • 2
  • Bin Zhang
    • 1
  • Peng Sun
    • 3
  • Yunfei Feng
    • 4
  1. 1.School of Computer Science and EngineeringNortheastern UniversityShenyangPeople’s Republic of China
  2. 2.School of Information Science and EngineeringShenyang Ligong UniversityShenyangPeople’s Republic of China
  3. 3.Department of Computer ScienceIOWA State UniversityAmesUSA
  4. 4.Sam’s Club Technology Wal-mart Inc.BentonvilleUSA

Personalised recommendations