Drywood Pest Termite Cryptotermes brevis (Blattaria: Isoptera: Kalotermitidae): a Detailed Morphological Study of Pseudergates

  • C S CesarEmail author
  • D Giacometti
  • A M Costa-Leonardo
  • F E Casarin
Systematics, Morphology and Physiology


The Kalotermitidae Cryptotermes brevis (Walker) presents colonies that lack a true worker caste. They have totipotent worker-like individuals named pseudergates. Few studies have characterized the morphology of immature instars, including pseudergates. In order to identify these instars and characterize the pseudergates, we conducted a comparison between morphometric and morphological variations among immature individuals of C. brevis colonies. Juvenile hormone analog (JHA) was used in the first instar nymphs to induce regressive molts and compare morphological differences between nymphs and pseudergates. Results showed the existence of three larval instars and four nymphal instars. These immatures were morphologically characterized. Individuals classified as third instar larvae presented white body, 10 to 12 antennal articles, absent or small non-pigmented compound eyes, and absence of wing buds. Pseudergates presented pigmented abdomen and sclerotized cuticle, 10 to 12 antennal articles, and absent or small compound eyes, and few specimens had large pigmented compound eyes and absence of wing buds. First instar nymphs had pigmented abdomen and sclerotized cuticle, 10 to 12 antennal articles, both large non-pigmented and pigmented compound eyes, the presence of wing buds. Bioassays using JHA on first instar nymphs resulted in a large percentage of nymph-soldier intercastes. We concluded that abdomen pigmentation and sclerotized cuticle are good characters to differentiate pseudergates from larvae and the absence of wing buds is a good character to differentiate pseudergates from nymphs. Our findings not only contribute to the basic biological and morphological information of this species but also help to identify correctly pseudergates in further studies that involve applied bioassays.


Drywood termite, false worker, pest insect, polyphenism, juvenile hormone analog, totipotent individuals 



We thank Dr. Eliana M. Cancello and Dr. Mauricio M. da Rocha for identification of the species. This study was supported by FAPESP, Brazil (No. 07/58248-7).

Author Contribution

C. S. Cesar, D. Giacometti, A. M. Costa-Leonardo, and F. E. Casarin planned, designed, and executed experimental work, and wrote the manuscript; C. S. Cesar conducted data analyses.


  1. Albino E, Costa-Leonardo AM (2011) Nymphs in foraging populations of Coptotermes gestroi (Isoptera: Rhinotermitidae). Anim Biol 61:427–439CrossRefGoogle Scholar
  2. Barbosa JRC, Constantino R (2017) Polymorphism in the neotropical termite Serritermes serrifer. Entomol Exp Appl 163:43–50CrossRefGoogle Scholar
  3. Barsotti RC, Costa-Leonardo AM (2005) The caste system of Coptotermes gestroi (Isoptera: Rhinotermitidae). Sociobiology 46:87–103Google Scholar
  4. Bourguignon T, Šobotník J, Sillam-Dussès D, Jiroš P, Hanus R, Roisin Y, Miura T (2012) Developmental pathways of Psammotermes hybostoma (Isoptera: Rhinotermitidae): old pseudergates make up a new sterile caste. PLoS One 7:e44527CrossRefGoogle Scholar
  5. Chapman RF (1998) The insects: structure and function. Cambridge University Press, Cambridge, p 770CrossRefGoogle Scholar
  6. Costa-Leonardo AM (2002) Cupins-praga: morfologia, biologia e controle. Universidade Estadual Paulista, Rio Claro, p 128Google Scholar
  7. Cornette R, Gotoh H, Koshikawa S, Miura T (2008) Juvenile hormone titers and caste differentiation in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae). J Insect Physiol 54:922–930CrossRefGoogle Scholar
  8. Crosland MWJ, Traniello JFA, Scheffrahn RH (2004) Social organization in the drywood termite, Cryptotermes cavifrons: is there polyethism among instars? Ethol Ecol Evol 16:117–132CrossRefGoogle Scholar
  9. Grassé P-P, Noirot C (1947) Le polymorphisme social du termite à cou jaune (Calotermes flavicollis F.). Les faux-ouvriers ou pseudergates et les mues régressives. C R Acad Sci 224:219–221Google Scholar
  10. Katoh H, Matsumoto T, Miura T (2007) Alate differentiation and compound eye development in the dry-wood termite Neotermes koshunensis (Isoptera, Kalotermitidae). Insect Soc 54:11–19CrossRefGoogle Scholar
  11. Kindl J, Hrdy I (2005) Development of neotenics induced by a temporary absence of functional reproductives in Kalotermes flavicollis (Isoptera: Kalotermitidae). Eur J Entomol 102:307–311CrossRefGoogle Scholar
  12. Korb J (2007) Workers of a drywood termite do not work. Front Zool 4:7CrossRefGoogle Scholar
  13. Korb J, Belles X (2017) Juvenile hormone and hemimetabolan eusociality: a comparison of cockroaches with termites. Curr Opin Insect Sci 22:109–116CrossRefGoogle Scholar
  14. Korb J, Hartfelder K (2008) Life history and development - a framework for understanding developmental plasticity in lower termites. Biol Rev 83:296–313CrossRefGoogle Scholar
  15. Korb J, Lenz M (2004) Reproductive decision-making in the termite Cryptotermes secundus (Kalotermitidae) under variable food conditions. Behav Ecol 14:390–395CrossRefGoogle Scholar
  16. Korb J, Schmindinger S (2004) Help or disperse? Cooperation in termites influenced by food conditions. Behav Ecol Sociobiol 56:89–95CrossRefGoogle Scholar
  17. Korb J, Hoffmann K, Hartfelder K (2009) Endocrine signatures underlying plasticity in postembryonic development of a lower termite, Cryptotermes secundus (Kalotermitidae). Evol Dev 11:269–277CrossRefGoogle Scholar
  18. Korb J, Hoffmann K, Hartfelder K (2012) Molting dynamics and juvenile hormone titer profiles in the nymphal stages of a lower termite, Cryptotermes secundus (Kalotermitidae) – signatures of developmental plasticity. J Insect Physiol 58:376–386CrossRefGoogle Scholar
  19. Koshikawa S, Matsumoto T, Miura T (2001) Regressive molt in the japanese damp-wood termite Hodotermopsis japonica (Isoptera: Termopsidae). Sociobiology 38:495–500Google Scholar
  20. Lefeuve P, Thorne BL (1984) Nymph-soldier intercastes in Nasutitermes lujae and N. columbicus (Isoptera; Termitidae). Can J Zool 62:959–964CrossRefGoogle Scholar
  21. Maekawa K, Mizuno S, Koshikawa S, Miura T (2008) Compound eye development during caste differentiation in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Zool Sci 25:699–705CrossRefGoogle Scholar
  22. McMahan E (1962) Laboratory studies of colony establishment and development in Cryptotermes brevis (Walker) (Isoptera: Kalotermitidae). Proc Hawaiian Entomol Soc 18:145–150Google Scholar
  23. Miura T, Koshikawa S, Matsumoto T (2003) Winged pre-soldiers induced by a juvenile hormone analog in Zootermopsis nevadensis: implications for plasticity and evolution of caste differentiation in termites. J Morphol 257:22–32CrossRefGoogle Scholar
  24. Miura T, Hirono Y, Machida M, Kitade O, Matsumoto T (2000) Caste developmental system of the japanese damp-wood termite Hodotermopsis japonica (Isoptera: Termopsidae). Ecol Res 15:83–92CrossRefGoogle Scholar
  25. Moura FMS, Vasconcellos A, Silva NB, Bandeira AG (2011) Caste development systems of the Neotropical termite Constrictotermes cyphergaster (Isoptera, Termitidae). Insect Soc 58:169–175CrossRefGoogle Scholar
  26. Myles TG (1999) Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33:1–91Google Scholar
  27. Myles TG, Chang F (1984) The caste system and caste mechanisms of Neotermes connexus (Isoptera: Kalotermitidae). Sociobiology 9:163–319Google Scholar
  28. Neoh KB, Lee CY (2011) Developmental stages and caste composition of a mature and incipient colony of the drywood termite, Cryptotermes dudleyi (Isoptera: Kalotermitidae). J Econ Entomol 104:622–628CrossRefGoogle Scholar
  29. Nijhout HF, Wheeler DE (1982) Juvenile hormone and the physiological basis of insect polymorphisms. Q Rev Biol 57:109–133CrossRefGoogle Scholar
  30. Noirot C, Pasteels JM (1987) Ontogenetic development and evolution of the worker caste in termites. Experientia 43:851–860CrossRefGoogle Scholar
  31. Pearce MJ (1997) Termites: biology and pest management. Cab International, Wallingford, pp 40–48Google Scholar
  32. Potenza MR, Zorzenon FJ (2006) Cupins: pragas em áreas urbanas. Instituto Biológico, São Paulo, p 66Google Scholar
  33. Roisin Y (2000) Diversity and evolution of caste patterns. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 95–119CrossRefGoogle Scholar
  34. Roisin Y, Korb J (2011) Social organization and the status of workers in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, London, pp 133–164Google Scholar
  35. Roonwal ML (1969) Measurement of termites (Isoptera) for taxonomic purposes. J Zool Soc India 21:11–65Google Scholar
  36. Sbeghen-Loss AC, Mato M, Cesio MV, Frizzo C, Barros NM, Heinzen H (2011) Antifeedant activity of citrus waste wax and its fractions against the dry wood termite, Cryptotermes brevis. J Insect Sci 11:1–7CrossRefGoogle Scholar
  37. Scheffrahn RH, Su N-Y (2008) West Indian drywood termite, Cryptotermes brevis (Walker) (Insecta: Isoptera: Kalotermitidae) Accessed 30 Nov 2015
  38. Statistica v. 12 (2012) StatSoft, Inc, Tulsa, USAGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2019

Authors and Affiliations

  1. 1.Dept of Ecology and Evolutionary Biology, Lab de TermitologiaFederal Univ of São Paulo (UNIFESP)DiademaBrasil
  2. 2.Dept of EcologyUniv of São PauloSão PauloBrasil
  3. 3.Dept of Biological Sciences, Instituto de BiociênciasSão Paulo State Univ (UNESP)Rio ClaroBrasil

Personalised recommendations