Advertisement

Neotropical Entomology

, Volume 48, Issue 4, pp 583–593 | Cite as

Spatial Analysis of Presence, Injury, and Economic Impact of the Melolonthidae (Coleoptera: Scarabaeoidea) Complex in Avocado Crops

  • C Valencia Arias
  • A Martínez Osorio
  • J G Morales Osorio
  • J G Ramírez-GilEmail author
Ecology, Behavior and Bionomics
  • 29 Downloads

Abstract

Beetle insect species classified within the Melolonthidae complex (Coleoptera: Scarabaeoidea) are a serious pest in several crops around the world including avocado (Persea americana Mill). The present work focused on determining the spatial behavior of the Melolonthidae complex of beetles and determined the economic impact in avocado crops in Antioquia, Colombia, South America. Beetle presence and damage produced in both foliage and fruits were quantified during 3 years for each avocado tree tested in two planted lots located in different places. The indexes of Cambardella, Morisita, and economic losses were calculated with data obtained. Our results strongly suggest that beetles present an isotropic movement in the lots with the damage beginning by the borders. Once insects enter the lots, they move in any direction inside the crop area with weak or moderate spatial dependence and low or null aggregation. Strong preference for fruits rather than foliage was observed. Economic analysis indicates that damage in fruit skin causes major losses. From observed results, it is proposed that integrated pest control should be directed mainly to fruits from the very early stages of growth and development and traps should be localized strategically and following the spatial and temporal distribution of insects for both prevention and control.

Keywords

Cambardella index Morisita index Beetle spatial distribution Fruit losses in Persea americana 

Notes

Acknowledgements

We are very grateful to Universidad Nacional de Colombia sede Medellín for partial funding and use of laboratory facilities, to John Albeiro Quiróz from the entomological museum at Universidad Nacional de Colombia sede Medellín (MEFLG) for valuable help in the taxonomic identification of adult insects, and to the avocado producers for their help during the experiments.

Author Contributions

CVA conducted data analysis and wrote the first version, AMO conducted data analyses, JGMO wrote and reviewed the last version, and JGRG designed and executed experimental work, conducted data analyses, and wrote the manuscript.

References

  1. Ávila-Quezada G, Téliz-Ortiz D, Mora-Aguilera G, Vaquera-Huerta H, Tijerina-Chávez L (2003) Spatial and temporal dynamic of scab (Sphaceloma perseae Jenk.) on avocado (Persea americana Mill). Rev Mex Fito 21(2):152–160Google Scholar
  2. Brenner RJ, Focks DA, Arbogast RT, Weaver DK, Shuman D (1998) Practical use of spatial analysis in precision targeting for integrated pest management. Am Entomol 44:79–101CrossRefGoogle Scholar
  3. Cambardella CA, Moorman TB, Parkin TB, Karlen DL, Novak JM, Turco RF, Konopka AE (1994) Field-scale variability of soil properties in Central Iowa soils. Soil Sci Soc Am J 58:1501–1511.  https://doi.org/10.2136/sssaj1994.03615995005800050033x CrossRefGoogle Scholar
  4. Carrillo D, Cruz L, Kendra P, Narvaez T, Montgomery W, Monterroso A, De Grave C, Cooperband M (2016) Distribution, pest status and fungal associates of Euwallacea nr. fornicatus in Florida avocado groves. Insects 7(14):55.  https://doi.org/10.3390/insects7040055 CrossRefGoogle Scholar
  5. Castrignanò A, Boccaccio L, Cohen Y, Nestel D, Kounatidis I (2012) Spatio-temporal population dynamics and area-wide delineation of Bactrocera oleae monitoring zones using multi-variate geostatistics. Precis Agric 13:421–441.  https://doi.org/10.1007/s11119-012-9259-4 CrossRefGoogle Scholar
  6. Cherman MA, Morón MÁ (2014) Validación de la familia Melolonthidae Leach, 1819 (Coleoptera: Scarabaeoidea). Acta Zool Mex 30:201–220Google Scholar
  7. Dosdall LM, Ulmer BJ, Gibson GAP, Cárcamo HA (2006) The spatio-temporal distribution dynamics of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Coleoptera: Curculionidae), and its larval parasitoids in canola in western Canada. Biocontrol Sci Tech 16:987–1006.  https://doi.org/10.1080/09583150600828320 CrossRefGoogle Scholar
  8. FAO (2014) FAOSTAT. http://www.fao.org/faostat/es/#home. Accessed 9 Aug 2017
  9. García-Palacios D, Bautista-Martínez N, Lagunes-Tejeda A, Carrillo-Sánchez J, Nieto-Ángel D, García-Gutiérrez C (2016) Population fluctuation and altitudinal distribution of Tetraleurodes perseae (Nakahara) (Hemiptera: Aleyrodidae) in avocado (Lauraceae) in Morelos, Mexico. J Insect Sci 16(1):102.  https://doi.org/10.1093/jisesa/iew085 CrossRefGoogle Scholar
  10. Gholami S, Sayad E, Gebbers R, Schirmann M, Joschko M, Timmer J (2016) Spatial analysis of riparian forest soil macrofauna and its relation to abiotic soil properties. Pedobiologia 59:27–36.  https://doi.org/10.1016/j.pedobi.2015.12.003 CrossRefGoogle Scholar
  11. Holdridge L (1967) Life zone ecology. Tropical Science Center, San Jose, Costa Rica, p 206Google Scholar
  12. Jenkins DA, Goenaga R (2010) Spatial distribution of Phyllophaga vandinei (Coleoptera: Scarabaeidae) emergence within and around a mamey sapote orchard. Fla Entomol 93:323–324.  https://doi.org/10.1653/024.093.0231 CrossRefGoogle Scholar
  13. Knapp M, Řezáč M (2015) Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape. PLoS One 10(4):e0123052.  https://doi.org/10.1371/journal.pone.0123052 CrossRefGoogle Scholar
  14. Koch FH, Smith WD (2008) Spatio-temporal analysis of Xyleborus glabratus (Coleoptera: Curculionidae [corrected] Scolytinae) invasion in eastern U.S. forests. Environ Entomol 37(2):442–452.  https://doi.org/10.1603/0046-225X(2008)37[442:SAOXGC]2.0.CO;2 CrossRefGoogle Scholar
  15. Kristensen L, Olsen J, Weiner J, Griepntrog HW, Nørremark M (2006) Describing the spatial pattern of crop plants with special reference to crop–weed competition studies. Field Crops Res 96:207–215.  https://doi.org/10.1016/j.fcr.2005.07.004 CrossRefGoogle Scholar
  16. Londoño ME, Kondo T, Carabali A, Varon E, Caicedo A (2014) Insectos y acaros. In: Actualización tecnológica y buenas prácticas agrícolas (BPA) en el cultivo de aguacate, Bernal y Díaz. CORPOICA, Rionegro, Antioquia, Colobia, pp 228–283Google Scholar
  17. López-García MM, Gasca-Álvarez HJ, Amat-García G (2015) The scarab beetle tribe Pentodontini (Coleoptera: Scarabaeidae: Dynastinae) of Colombia: taxonomy, natural history, and distribution. Zootaxa 4048:451–492.  https://doi.org/10.11646/zootaxa.4048.4.1 CrossRefGoogle Scholar
  18. Maldonado-Zamora FI, Ramírez-Dávila JF, Lara-Díaz AV, Rivera-Martínez R, Acosta-Guadarra A (2017) Estabilidad espacial y temporal de la distribución de trips 1 en el cultivo de aguacate en el estado de México. Southwest Entomol 42:447–462.  https://doi.org/10.3958/059.042.0215 CrossRefGoogle Scholar
  19. Marchioro CA (2016) Global potential distribution of Bactrocera carambolae and the risks for fruit production in Brazil. PLoS One 11(11):e0166142.  https://doi.org/10.1371/journal.pone.0166142 CrossRefGoogle Scholar
  20. Menocal O, Kendra PE, Montgomery WS, Crane JH, Carrillo D (2018) Vertical distribution and daily flight periodicity of ambrosia beetles (Coleoptera: Curculionidae) in Florida avocado orchards affected by laurel wilt. J Econ Entomol 111(3):1190–1196.  https://doi.org/10.1093/jee/toy044 CrossRefGoogle Scholar
  21. Ministerio de Agricultura y Desarrollo Rural de Colombia (2018) Cadena de aguacate: Indicadores e Instrumentos. https://sioc.minagricultura.gov.co/Aguacate/Documentos/002%20-%20Cifras%20Sectoriales/002%20-%20Cifras%20Sectoriales%20-%202018%20Marzo%20Aguacate.pdf. Accessed 17 Aug 2018
  22. Morishita M (1962) I σ-index, a measure of dispersion of individuals. Res Popul Ecol 4:1–7.  https://doi.org/10.1007/BF02533903 CrossRefGoogle Scholar
  23. Morón MÁ, Neita-Moreno JC (2014) Nuevas especies colombianas de Phyllophaga Harris (Coleoptera: Melolonthidae: Melolonthinae). Caldasia 36:203–216.  https://doi.org/10.15446/caldasia.v36n1.43900 CrossRefGoogle Scholar
  24. Neita J, Gaigl A (2008) Escarabajos de importancia agrícola en Colombia (Coleoptera: Scarabaeidae “Pleurosticti”). Universidad Nacional de Colombia, Bogotá, Colombia, p 162Google Scholar
  25. Neita JC, Ocampo FC (2012) A new genus and three new species of Neotropical Tanyproctini (Coleoptera: Scarabaeidae: Melolonthinae). Zootaxa 3281:41–55.  https://doi.org/10.5281/zenodo.213516 CrossRefGoogle Scholar
  26. Neita-Moreno JC (2012) Escarabajos (Coleoptera: Scarabaeoidea) del departamento del Chocó, Colombia. Revista Biodiversidad Neotropical 1:17–27.  https://doi.org/10.18636/bioneotropical.v1i1.25.g226 CrossRefGoogle Scholar
  27. Neita-Moreno JC, Morón MA, Zuluaga-Correa CA (2012) Description of the immature stages of four species of Macrodactylini (Coleoptera: Melolonthidae: Melolonthinae). Neotropical Entomology 41:150–162.  https://doi.org/10.1007/s13744-012-0023-2 CrossRefGoogle Scholar
  28. Odanga J, Mohamed S, Mwalusepo S, Olubayo F, Nyankanga R, Khamis F, Rwomushana I, Johansson T, Ekesi S (2018) Spatial distribution of Bactrocera dorsalis and Thaumatotibia leucotreta in smallholder avocado orchards along altitudinal gradient of Taita mills and Mount Kilimanjaro. Insects 9:71.  https://doi.org/10.3390/insects9020071 CrossRefGoogle Scholar
  29. Oliveira LJ, Farias JRB, Hoffmann-Campo CB, Amaral M, Garcia M (2009) Seasonal and vertical distribution of Phyllophaga cuyabana (Moser)(Coleoptera: Melolonthidae) in the soil profile. Neotropical Entomology 38(5):582–588.  https://doi.org/10.1590/S1519-566x2009000500004 CrossRefGoogle Scholar
  30. R Development Core Team (2017) R: the R Project for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria https://www.r-project.org/. Accessed 9 Aug 2017Google Scholar
  31. Ramírez-Dávila FJ, Solares-Alonso VM, Figueroa-Figueroa DK, Sánchez-Pale JR (2013) Comportamiento espacial de trips (Insecta: Thysanoptera), en plantaciones comerciales de aguacate (Persea americana Mill.) en Zitácuaro, Michoacán, México. Acta Zool Mex 29:545–562Google Scholar
  32. Ramírez-Gil JG (2017) Calidad del fruto de aguacate con aplicaciones de ANA, boro, nitrógeno, sacarosa y anillado. Agronomia Mesoamericana 28:591–603.  https://doi.org/10.15517/ma.v28i3.23688
  33. Ramírez-Gil J (2018) Avocado wilt complex disease, implications and management in Colombia. RFNA 71:8525–8541.  https://doi.org/10.15446/rfna.v71n2.66465 Google Scholar
  34. Ramírez-Gil JG, Gilchrist Ramelli E, Morales Osorio JG (2017) Economic impact of the avocado (cv. Hass) wilt disease complex in Antioquia, Colombia, crops under different technological management levels. Crop Prot 101:103–115.  https://doi.org/10.1016/j.cropro.2017.07.023 CrossRefGoogle Scholar
  35. Ramírez-Gil JG, Morales JG, Peterson AT (2018) Potential geography and productivity of “Hass” avocado crops in Colombia estimated by ecological niche modeling. Sci Hortic 237:287–295.  https://doi.org/10.1016/j.scienta.2018.04.021 CrossRefGoogle Scholar
  36. Ribeiro P, Diggle P (2016) geoR: analysis of geostatistical data. http://leg.ufpr.br/geoR/geoRdoc/geoRintro.pdf. Accessed 19 Aug 2018
  37. Rijal J, Brewster C, Bergh J (2014) Spatial distribution of grape root borer (Lepidoptera: Sesiidae) infestations in Virginia vineyards and implications for sampling. Environ Entomol 43(3):716–728.  https://doi.org/10.1603/EN13285 CrossRefGoogle Scholar
  38. Sara SA, McCallen EB, Switzer PV (2013) The spatial distribution of the Japanese beetle, Popillia japonica, in soybean fields. J Insect Sci 13:36.  https://doi.org/10.1673/031.013.3601 CrossRefGoogle Scholar
  39. Sciarretta A, Tabilio MR, Lampazzi E, Ceccaroli C, Colacci M, Trematerra P (2018) Analysis of the Mediterranean fruit fly [Ceratitis capitata (Wiedemann)] spatio-temporal distribution in relation to sex and female mating status for precision IPM. PLoS One 13(4):e0195097.  https://doi.org/10.1371/journal.pone.0195097 CrossRefGoogle Scholar
  40. Stechauner-Rohringer R, Pardo-Locarno L (2010) Redescripcion de inmaduros, ciclo de vida, distribucion e importancia agricola de Cyclocephala lunulata Burmeister (Coleoptera: Melolonthidae: Dynastinae) en Colombia. Boletín Científico Centro De Museos de Historia Natural 14:203–220Google Scholar
  41. Tuomola J, Yemshanov D, Huitu H, Hannunen S (2018) Mapping risks of pest invasions based on the spatio-temporal distribution of hosts. Management of Biological Invasions 9(2):115–126.  https://doi.org/10.3391/mbi.2018.9.2.05. CrossRefGoogle Scholar
  42. Valencia C, Yepes F, Ramírez J, Calle K. 2015. Reconocimiento de escarabajos (Coleoptera: Melolonthidae) en lotes cultivados con aguacate (Persea americana Mill.) en Antioquia, MPA38. In: Jorge Luis Jaramillo González. 2015. Memorias & Resúmenes Congreso Colombiano de Entomología. 42, Congreso SOCOLEN. Medellín, Antioquia, 29 al 31 de julio de 2015. Sociedad Colombiana de Entomología – SOCOLEN, Medellín, 763Google Scholar
  43. Vallejo F, Morón MA (2008) Description of the immature stages and redescription of the adults of Ancognatha scarabaeoides Erichson (Coleoptera: Scarabaeidae: Dynastinae), a member of the soil white grub assemblage in Colombia. Coleopt Bull 62:154–164.  https://doi.org/10.1649/1022.1 CrossRefGoogle Scholar
  44. Villegas NP, Gaigl A, Vallejo L (2008) El complejo chisa (Coleoptera: Melolonthidae) asociado a cebolla y pasto en Risaralda, Colombia. Revista Colombiana de Entomologia 34:82–89Google Scholar
  45. Yepes F (2011) Annotations on species of Coleoptera, family Melolonthidae, collected in municipalities of the department of Antioquia, Colombia. Revista de Agricultura Tropical 34(3–4):122–129Google Scholar

Copyright information

© Sociedade Entomológica do Brasil 2019

Authors and Affiliations

  1. 1.Depto de Ciencias Agronómicas, Facultad de Ciencias AgrariasUniv Nacional de Colombia sede MedellínMedellínColombia
  2. 2.Facultad de MinasUniv Nacional de Colombia, sede MedellínMedellínColombia
  3. 3.Depto de Agronomía, Facultad de Ciencias AgrariasUniv Nacional de Colombia sede BogotáBogotáColombia

Personalised recommendations