Neotropical Entomology

, Volume 48, Issue 2, pp 175–185 | Cite as

Brazilian Legislation Leaning Towards Fast Registration of Biological Control Agents to Benefit Organic Agriculture

  • P H B TogniEmail author
  • M Venzon
  • A C G Lagôa
  • E R Sujii


Brazil is one of the main users of chemical pesticides in the world. These products threaten human and environmental health, and many of them are prohibited in countries other than Brazil. This paradigm exists in contrast with worldwide efforts to make the need for food production compatible with biodiversity conservation, preservation of ecosystem services, and human health. In this scenario, the development of sustainable methods for crop production and pest management such as organic agriculture and biological control are necessary. Herein, we describe how the process of registration of natural enemy–based products in organic agriculture is simpler and faster than the conventional route of chemical insecticides and can favor the development of the biological control market in Brazil. Since the regulatory mechanisms have been established in Brazil for organic agriculture, the number of biological control products registered has increased exponentially. Today, 50 companies and associations are marketing 16 species/isolates and 95 natural enemy–based products. Although this scenario presents a series of new opportunities to increase and stimulate a more sustainable agriculture in the country, biological control is not always aligned with the aims and philosophy of organic agriculture and agroecology. Therefore, we also argue that new research efforts are needed on understanding how conservation biological control strategies can be integrated with augmentation biological control to promote a sustainable agriculture under the concepts of organic agriculture and agroecology.


Ecosystem services agroecology conservation biological control augmentation biological control habitat manipulation natural enemies 


Author Contribution

PHBT, ACGL, ERS, and MV conceived the study. PHBT and ACGL collected the data and analyzed the data. PHBT, ERS, and MV carried out the legislation survey. PHBT led the writing of the manuscript. All authors contributed critically to the drafts and gave approval for the final version.

Funding Information

This study was supported by research grants and fellowships to the authors from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).


  1. Agrofit (2018) Phytosanitary agrochemicals system – Ministry of Agriculture, Livestock and Food Supply, Brazil, 2018. http:// Accessed 28 Oct 2018
  2. Alves SB, Lopes RB (2008) Controle microbiano de pragas na América Latina. FEALQ, Piracicaba, p 414Google Scholar
  3. Amaral DSSL, Venzon M, Duarte MVA, Sousa FF, Pallini A, Harwood JA (2013) Non-crop vegetation associated with chili pepper agroecosystems promote the abundance and survival of aphid predators. Biol Control 64:338–346CrossRefGoogle Scholar
  4. Amaral DSSL, Vezon M, Santos HH, Sujii ER, Schimitd J, Harwood JD (2016) Non-crop plant communities conserve spider populations in chili pepper agroecosystems. Biol Control 103:69–77CrossRefGoogle Scholar
  5. Bacci L, Silva EM, Martins JC, Soares MA, Campos MR, Picanço MC (2018) Seasonal variation in natural mortality factors of Tuta absoluta (Lepidoptera: Gelechiidae) in open-field tomato cultivation. J Appl Entomol 00:1–13Google Scholar
  6. Batista MC, Fonseca MCM, Teodoro AV, Martins EF, Pallini A, Venzon M (2017) Basil (Ocimum basilicum L.) attracts and benefits the green lacewing Ceraeochrysa cubana Hagen. Biol Control 110:98–196CrossRefGoogle Scholar
  7. Bombardi LM (2017) Geografia do uso de agrotóxicos no Brasil e conexões com a união europeia. FFLCH-USP, São Paulo, p 291Google Scholar
  8. Botelho PSM, Macedo M (2002) Cotesia flavipes para o controle de Diatraea saccharalis. In: Parra JRP, Botelho PSM, Corrêa-Ferreira BS, Bento JMS (eds) Controle biológico no Brasil: parasitoides e predadores. Editora Manole, São Paulo, pp 409–425Google Scholar
  9. Botelho PSM, Parra JPR, Chagas-Neto JF, Oliveira PB (1999) Associação do parasitóide de ovos Trichogramma galloi Zucchi (Hymenoptera: Trichogrammatidae) e do parasitóide larval Cotesia flavipes (Cam.) (Hymenoptera: Braconidae) no controle de Diatraea saccharalis, (Fabr.) (Lepidoptera: Crambidae) em cana-de-açúcar. Na Soc Entomol Bras 28:491–496CrossRefGoogle Scholar
  10. Brazil (2002) Projeto de Lei No. 6.299, de 13 de março de 2002. Accessed 03 Aug 2018
  11. Brazil (2003) Lei No. 10.831, de 23 de dezembro de 2003. Accessed 01 Aug 2018
  12. Brazil (2012) Decreto No. 7.794, de 20 de agosto de 2012. Accessed 01 Aug 2018
  13. Bueno VHP (2009) Controle biológico de pragas: produção massal e controle de qualidade. Editora UFLA, Lavras, p 429Google Scholar
  14. Carneiro FF, Pignati W, Rigotto RM, Augusto LGS, Rizollo A, Muller NM, Alexandre VP, Friedrich K, Mello MSC (2015) Dossiê ABRASCO – Um alerta sobre os impactos dos agrotóxicos na saúde. Associação Brasileira de Saúde Coletiva, Rio de Janeiro, p 623Google Scholar
  15. Castilho RC, Moraes GJ, Silva ES, Freire RAP, Da Eira FC (2009) The predatory mite Stratiolaelaps scimitus as a control agent of the fungus gnat Bradysia matogrossensis in commercial production of the mushroom Agaricus bisporus. Int J Pest Manage 55:181–185CrossRefGoogle Scholar
  16. CDB – Convention on Biological Diversity (2010) Global biodiversity outlook 2. Convention on Biological Diversity, Montreal, p 81Google Scholar
  17. Costa MBB, Souza M, Júnior VM, Comin JJ, Lovato PE (2017) Agroecology development in Brazil between 1970 and 2015. Agroecol Sust Food 41:276–295CrossRefGoogle Scholar
  18. Demite PR, Moraes GJ, McMurtry JA, Denmark HA, Castilho RC (2018) Phytoseiidae Database. (accessed 12 Jul 2018)
  19. FAO - Food and Agriculture Organization of the United Nations (2018). Agroecology knowledge hub: the 10 elements of agroecology. Accessed 15 Sep 2018
  20. FAOSTAT - Food and Agriculture Organization of the United Nations (2016) Production crops 2016. Accessed 05 Jun 2018
  21. Ferreira J, Pardini R, Metzger JP, Fonseca CR, Pompeu PS, Sparovek G, Louzada J (2012) Towards environmentally sustainable agriculture in Brazil: challenges and opportunities for applied ecological research. J Appl Ecol 49:535–541Google Scholar
  22. Figueiredo MLC, Cruz I, Silva RB, Foster JE (2015) Biological control with Trichogramma pretiosum increases organic maize productivity by 19.4%. Agron Sustain Dev 35:1175–1183CrossRefGoogle Scholar
  23. Fornazier MJ, Martins DS, Souza CAS, Culik MP, Chipolesch JMA, Fornazier DL, Ferreira PSF, Zanuncio JC (2017) Invasion of the main cocoa-producing region of South America by Maconellicoccus hirsutus (Hemiptera: Pseudococcidae). Fla Entomol 100:168–171CrossRefGoogle Scholar
  24. Freire RAP, Moraes GJ, Silva ES, Vaz AC, Castilho RC (2007) Biological control of Bradysia matogrossensis (Diptera: Sciaridae) in mushroom cultivation with predatory mites. Exp Appl Acarol 42:87–93CrossRefGoogle Scholar
  25. Garibaldi LA, Carvalheiro LG, Vaissiere BE, Gemmill-Herren B, Hipolito J, Freitas BM, Ngo HT, Azzu N, Saez A, Astrom J, An J, Blochtein B, Buchori D, Garcia FJC, Oliveira da Silva F, Devkota K, Ribeiro MF, Freitas L, Gaglianone MC, Goss M, Irshad M, Kasina M, Filho AJSP, Kiill LHP, Kwapong P, Parra GN, Pires C, Pires V, Rawal RS, Rizali A, Saraiva AM, Veldtman R, Viana BF, Witter S, Zhang H (2016) Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351:388–391CrossRefGoogle Scholar
  26. Gould F, Brown ZS, Kuzma J (2018) Wicked evolution: can we address the sociobiological dilemma of pesticide resistance? Science 360:728–732CrossRefGoogle Scholar
  27. Haji FNP, Prezotti L, Carneiro JS, Alencar JA (2002) Trichogramma pretiosum para o controle de pragas do tomateiro industrial. In: Parra JRP, Botelho PSM, Corrêa-Ferreira BS, Bento JMS (eds) Controle biológico no Brasil: parasitoides e predadores. Editora Manole, São Paulo, pp 477–494Google Scholar
  28. Heimpel GE, Lundgren JG (2000) Sex ratios of commercially reared biological control agentes. Biol Control 19:77–93CrossRefGoogle Scholar
  29. IBAMA - Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (2016) Instrução Normativa IBAMA 5/2016. Accessed 20 Oct 2018
  30. IBAMA - Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (2018) Nota Técnica 2/2018/CGASQ/CGFIN. Accessed 14 Jul 2018
  31. Kairo MTK, Paraiso O, Gautam RD, Peterkin DD (2013) Cryptolaemus montrouzieri (Mulsant) (Coccinellidae: Scymninae): a review of biology, ecology, and use in biological control with particular reference to potential impact on non-target organisms. CAB Rev 8:1–20CrossRefGoogle Scholar
  32. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41CrossRefGoogle Scholar
  33. van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57:1–20CrossRefGoogle Scholar
  34. van Lenteren JC, Bueno VHP (2003) Augmentative biological control of arthropods in Latin America. BioControl 48:123–139CrossRefGoogle Scholar
  35. van Lenteren JC, Bigler F, Burgio G, Hokkanen HMT, Thomas MB (2002) Risks of importation and release of exotic biological control agents: how to determine host specificity? IOBC/ WPRS Bulletin 25:281–284Google Scholar
  36. van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63:39–59CrossRefGoogle Scholar
  37. Lixa AT, Campos JM, Resende ALS, Silva JC, Almeida MMTB, Aguiar-Menezes EL (2010) Diversidade de Coccinellidae (Coleoptera) em plantas aromáticas (Apiaceae) como sítios de sobrevivência e reprodução em sistema agroecológico. Neotrop Entomol 39:354–359CrossRefGoogle Scholar
  38. MAPA - Ministério da Agricultura, Pecuária e Abastecimento (2014) Instrução Normativa MAPA 17/2014. Accessed 05 Sep 2018
  39. MAPA - Ministério da Agricultura, Pecuária e Abastecimento (2017) Instrução Normativa MAPA 35/2017. Accessed 20 Oct 2018
  40. MAPA - Ministério da Agricultura, Pecuária e Abastecimento (2018) Portaria MAPA 112/2018. Accessed 20 Oct 2018
  41. MAPA/IBAMA/ANVISA - Ministério da Agricultura, Pecuária e Abastecimento/Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis/Agência Nacional de Vigilância Sanitária (2006) Instrução Normativa Conjunta SDA/ANVISA/IBAMA 02/2006. Accessed 18 Jul 2018
  42. MAPA/IBAMA/ANVISA - Ministério da Agricultura, Pecuária e Abastecimento/Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis/Agência Nacional de Vigilância Sanitária (2011) Instrução Normativa Conjunta SDA/SDC/ANVISA/IBAMA 01/2011. Accessed 09 Jul 2018
  43. McMurtry JA, Moraes GJ, Sourassou NF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18:297–320Google Scholar
  44. Medeiros MA, Sujii ER, Morais HC (2011) Fatores de mortalidade na fase de ovo de Tuta absoluta em sistemas de produção orgânica e convencional de tomate. Bragantia 70:72–80CrossRefGoogle Scholar
  45. Medeiros HR, Hoshino AT, Ribeiro MC, Morales MN, Martello F, Pereira Neto OC, Carstensen DW, Menezes Junior AO (2018) Non-crop habitats modulate alpha and beta diversity of flower flies (Diptera, Syrphidae) in Brazilian agricultural landscapes. Biodivers Conserv 27:1309–1326CrossRefGoogle Scholar
  46. Melo FPL, Arroyo-Rodríguez V, Fahrig L, Marínez-Ramos M, Tabarelli M (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28:462–468CrossRefGoogle Scholar
  47. Michaud JP (2018) Problems inherent to augmentation of natural enemies in open agriculture. Neotrop Entomol 47:161–170CrossRefGoogle Scholar
  48. Michereff Filho M, Faria M, Wraight SP, Silva AFAS (2009) Micoinseticidas e micoacaricidas no Brasil: como estamos após quatro décadas? Arq Inst Biol 76:769–779Google Scholar
  49. Moraes GJ (2002) Controle biológico de ácaros fitófagos com ácaros predadores. In: Parra JRP, Botelho PSM, Corrêa-Ferreira BS, Bento JMS (eds) Controle biológico no Brasil: parasitoides e predadores. Editora Manole, São Paulo, pp 225–238Google Scholar
  50. Moscardi F (1999) Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44:257–289CrossRefGoogle Scholar
  51. Oliveira H, Janssen A, Pallini A, Venzon M, Fadini M, Duarte V (2007) A phytoseiid predator from the tropics as potential biological control agent for the spider mite Tetranychus urticae Koch (Acari: Tetranychidae). Biol Control 42:105–109CrossRefGoogle Scholar
  52. Oliveira CM, Auad AM, Mendes SM, Frizzas MR (2013) Economic impact of exotic insect pests in Brazilian agriculture. J Appl Entomol 137:1–15CrossRefGoogle Scholar
  53. Parra JRP (2014) Biological control in Brazil: an overview. Sci Agric 71:345–355CrossRefGoogle Scholar
  54. Parra JRP, Zucchi RA (2004) Trichogramma in Brazil: feasibility of use after twenty years of research. Neotrop Entomol 33:271–281CrossRefGoogle Scholar
  55. Parra JRP, Botelho PSM, Corrêa-Ferreira BS, Bento JMS (2002) Controle biológico no Brasil: parasitoides e predadores. Editora Manole, São Paulo, p 635Google Scholar
  56. Pignati WA, Lima FANS, Lara SS, Correa MLM, Barbosa JR, Leão LHC, Pignatti MG (2017) Distribuição espacial do uso de agrotóxicos no Brasil: uma ferramenta para a Vigilância em Saúde. Cien Saude Colet 22:3281–3293CrossRefGoogle Scholar
  57. Resende ALS, Souza B, Fereira RB, Aguiar-Menezes EL (2017) Flowers of Apiaceous species as sources of pollen for adults of Chrysoperla externa (Hagen) (Neuroptera). Biol Control 106:40–44CrossRefGoogle Scholar
  58. Rezende MQ, Venzon M, Perez AL, Cardoso IM, Janssen A (2014) Extrafloral nectaries of associated trees can enhance natural pest control Agric Ecosyst Environ 188: 198203, 198, 203Google Scholar
  59. Rosset PM, Altieri MA (1997) Agroecology versus input substitution: a fundamental contradiction of sustainable agriculture. Soc Nat Resour 10:283–295CrossRefGoogle Scholar
  60. Sousa AATC, Souza LM, Togni PHB, Vieira L, Harterreiten-Souza ES, Carneiro RG, Fontes EMG, Pires CSS, Sujii ER (2016) Diagnóstico dos problemas fitossanitários na agricultura de base ecológica no Distrito Federal e Entorno. Embrapa Recursos Genéticos e Biotecnologia, Brasília, p 30Google Scholar
  61. Sujii ER, Venzon M, Medeiros MA, Pires CSS, Togni PHB (2010) Práticas culturais no manejo de pragas na agricultura orgânica. In: Venzon M, Júnior TJP, Pallini A (eds) Controle alternativo de pragas e doenças na agricultura orgânica. EPAMIG, Viçosa, pp 143–168Google Scholar
  62. Togni PHB, Frizzas MR, Medeiros MA, Nakasu EYT, Pires CSS, Sujii ER (2009) Dinâmica populacional de Bemisia tabaci biótipo b em tomate monocultivo e consorciado com coentro sob cultivo orgânico e convencional. Hortic Bras 27:183–188CrossRefGoogle Scholar
  63. Togni PHB, Venzon M, Muniz CA, Martins EF, Pallini A, Sujii ER (2016) Mechanisms underlying the innate attraction of an aphidophagous coccinellid to coriander plants: implications for conservation biological control. Biol Control 92:77–84CrossRefGoogle Scholar
  64. Togni PHB, Venzon M, Souza LM, Santos JPCR, Sujii ER (2018) Biodiversity provides whitefly biological control based on farm management. J Pest Sci.
  65. UN - United Nations. (2017). Report of the special rapporteur on the right for food. General assembly: Human rights councilGoogle Scholar
  66. Venzon M, Sujii ER (2009) Controle biológico conservativo. Informe Agropecuário 30:7–16Google Scholar
  67. Venzon M, Togni PHB, Amaral DSSL, Rezende MQ, Fonseca MCM, Martins EF (2015) Manejo agroecológico de pragas. Informe Agropecuário 36:19–30Google Scholar
  68. Vieira Filho JE (2016) Expansão da fronteira agrícola no Brasil: desafios e perspectivas. Texto para discussão n. 2223. IPEA, Brasília & Rio de Janeiro, p 36Google Scholar
  69. Willer H, Lernoud J (2016) The world of organic agriculture: statistics and emerging trends 2016. FiBL-IFOAM Report, Bonn and Frick, p 340Google Scholar
  70. Wyckhuys KAG, Lu Y, Morales H, Vazques LL, Legaspi JC, Eliopoulos PA, Hernandez LM (2013) Current status and potential of conservation biological control for agriculture in the developing world. Biol Control 65:152–167CrossRefGoogle Scholar
  71. Zhender G, Gurr M, Kühne S, Wade MR, Wratten SD, Wyss E (2007) Arthropod pest management in organic crops. Annu Rev Entomol 52:57–80CrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2019

Authors and Affiliations

  1. 1.Depto de Ecologia, Instituto de Ciências BiológicasUniv de Brasília – UnBBrasíliaBrasil
  2. 2.Empresa de Pesquisa Agropecuária de Minas Gerais – EPAMIGViçosaBrasil
  3. 3.Programa de Pós-Graduação em ZoologiaUniv de Brasília – UnBBrasíliaBrasil
  4. 4.Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA Recursos Genéticos e BiotecnologiaBrasíliaBrasil

Personalised recommendations