Advertisement

Neotropical Entomology

, Volume 48, Issue 4, pp 552–560 | Cite as

The Zygoptera/Anisoptera Ratio (Insecta: Odonata): a New Tool for Habitat Alterations Assessment in Amazonian Streams

  • J M B Oliveira-JuniorEmail author
  • L Juen
Ecology, Behavior and Bionomics
  • 86 Downloads

Abstract

The accumulation of scientific knowledge is far outstripped by the rate of environmental disturbance from human activities in aquatic habitats. This highlights the need to develop effective proxy measures of aquatic biodiversity that can demonstrate changes in communities associated with human activities. We evaluated whether the relative abundance and species richness of Anisoptera and Zygoptera can be used as a tool to measure environmental impacts on Amazonian streams. Adult of Anisoptera and Zygoptera were sampled in 50 Amazonian streams, in the municipality of Paragominas (Pará state), Brazil, using an entomological handnet. The physical features of each stream were evaluated using an index of environmental integrity (HII). We collected a total of 1769 Odonata specimens, representing 97 species (56 were Zygoptera and 41 were Anisoptera). Habitat modification resulted in an inversion in the proportional abundance and species richness of Anisoptera and Zygoptera, where Zygoptera diversity decreased with the loss of habitat integrity, whereas Anisoptera diversity increased with habitat disturbance. A decline of 0.1 in the habitat integrity index score resulted in an increase of approximately 13 individuals and 11 species of Anisoptera, with the exact opposite effect observed for the Zygoptera. In summary, the Odonata proved to be a useful model for the assessment of Amazonian streams, with sites where more than 54% of the Odonata species were Zygoptera being classified as preserved, and those dominated by Anisoptera species (> 59%) being considered degraded. This approach has clear applications for environmental impact assessments, as it reduces the influence of sampling effort and collector experience on assessment outcomes, and does not rely upon specialist knowledge, given that members of the two suborders are easily distinguished from one and other in the field.

Keywords

Amazon biomonitoring dragonflies damselflies environmental change lotic systems 

Notes

Acknowledgments

We are grateful to Dr. Leandro Brasil for assistance with the collection of biological material and Nelson Pinto for his help in identifying the Anisoptera; Frederico Lencioni for confirming the identification of the Zygoptera; Dra. Sheyla Couceiro, Dra. Joana Darc Batista, Dra. Karina Dias da Silva, and Dra. Karina Schmidt Furieri for invaluable suggestions on early versions of this manuscript; and Dr. Erlane Cunha for kindly drawing the map. We are grateful to the Dr. Alistair John Campbell for language revision. We would also like to thank the farmers and rural worker unions of Paragominas and all collaborating private landowners for their support. LJ (process: 307597/2016-4) is funded continuously by CNPq productivity grants.

Authors’ contributions

LJ and JMBOJ planned, designed, executed fieldwork, conducted analyses, and wrote the manuscript.

References

  1. Baptista DF, Dorvillé LFM, Buss DF, Nessimian JL (2001) Spatial and temporal organization of aquatic insects assemblages in the longitudinal gradient of a tropical river. Rev Bras Biol 61:295–394CrossRefGoogle Scholar
  2. Belle J (1988) A synopsis of the species of Phyllocycla Calvert with description of four new taxa and a key to the genera of the neotropical Gomphidae (Odonata, Gomphidae). Tijdschr Entomol 131:73–102Google Scholar
  3. Belle J (1996) Higher classification of the South-American Gomphidae (Odonata). Zool Med 70:298–324Google Scholar
  4. Borror DJ (1945) A key to the New World genera of Libellulidae (Odonata). Ann Entomol Soc Am 38:168–194CrossRefGoogle Scholar
  5. Brasil LS, Vieira TB, Oliveira-Junior JMB, Dias-Silva K, Juen L (2017) Elements of metacommunity structure in Amazonian Zygoptera among streams under different spatial and environmental conditions. Ecol Evol 7:1–11CrossRefGoogle Scholar
  6. Callisto M, Moreno P, Barbosa FAR (2001) Habitat diversity and benthic functional trophic groups at Serra do Cipó, southeast Brazil. Rev Bras Biol 61:259–266CrossRefGoogle Scholar
  7. Calvão LB, Vital MVC, Lima-Filho GF, Oliveira-Junior JMB, Pinto NS, De MPJ (2013) Thermoregulation and microhabitat choice in Erythrodiplax latimaculata Ris males (Anisoptera: Libellulidae). Odonatologica 42:97–108Google Scholar
  8. Calvão LB, Juen L, Oliveira-Junior JMB, Batista JD, De MPJ (2018) Land use modifies Odonata diversity in streams of the Brazilian Cerrado. J Insect Conserv 22:675–685.  https://doi.org/10.1007/s10841-018-0093-5 CrossRefGoogle Scholar
  9. Carle FL, Kjer KM, May ML (2008) Evolution of Odonata, with special reference to Coenagrionidae (Zygoptera). Arthropod Syst Phylo 66(1):37–44Google Scholar
  10. Carle FL, Kjer KM, May ML (2015) A molecular phylogeny and classification of Anisoptera (Odonata). Arthropod Syst Phylo 73(2):281–301Google Scholar
  11. Carvalho FG, Pinto NS, Oliveira-Junior JMB, Juen L (2013) Effects of marginal vegetation removal on Odonata communities. Acta Limnol Bras 25:10–18CrossRefGoogle Scholar
  12. Carvalho FG, Oliveira Roque F, Barbosa L, Assis Montag LF, Juen L (2018) Oil palm platation is not a suitable environment for most forest specialist species of Odonata in Amazonia. Anim Conserv 21:526–533.  https://doi.org/10.1111/acv.12427 CrossRefGoogle Scholar
  13. Clausnitzer V (2003) Dragonfly communities in coastal habitats of Kenya: indication of biotope quality and the need of conservation measures. Biodivers Conserv 12:333–356CrossRefGoogle Scholar
  14. Conrad KF, Willson KH, Harvey IF, Thomas CJ, Sherratt TN (1999) Dispersal characteristics of seven odonate species in an agricultural landscape. Ecography 22:524–531CrossRefGoogle Scholar
  15. Corbet PS (1999) Dragonflies: behavior and ecology of Odonata. Comstock Publ. Assoc, Ithaca, NYGoogle Scholar
  16. Corbet OS, May ML (2008) Fliers and perchers among Odonata: dichotomy or multidimensional continuum? A provisional reappraisal. Int J Odonatol 11:155–171CrossRefGoogle Scholar
  17. Couceiro SRM, Hamada N, Luz SLB, Forsberg BR, Pimentel TP (2007) Deforestation and sewage effects on aquatic macroinvertebrates in urban streams in Manaus, Amazonas, Brazil. Hydrobiologia 575:271–284CrossRefGoogle Scholar
  18. Covich AP, Palmer MA, Crowl TA (1999) The role of benthic invertebrate species in freshwater ecosystems. BioScience 49:119–127CrossRefGoogle Scholar
  19. De Marco P Jr, Resende DC (2002) Activity patterns and thermoregulation in a tropical dragonfly assemblage. Odonatologica 31:129–138Google Scholar
  20. Fincke OM (1992) Consequences of larval ecology for territoriality and reproductive success of a neotropical damselfly. Ecology 73:449–462CrossRefGoogle Scholar
  21. Fulan JÁ, Henry R (2007) Temporal distribution of immature Odonata (Insecta) on Eichhornia azurea (Kunth) stands in the Camargo Lake, Paranapanema River. Sao Paulo Rev Bras Entomol 51:224–227CrossRefGoogle Scholar
  22. Gardner TA, Ferreira J, Barlow J, Lees AC, Parry L, Vieira ICG, Berenguer E, Abramovay R, Aleixo A, Andretti C, Aragao LEOC, Araujo I, de Avila WS, Bardgett RD, Batistella M, Begotti RA, Beldini T, de Blas DE, Braga RF, Braga DL, de Brito JG, de Camargo PB, Campos dos Santos F, de Oliveira VC, Cordeiro ACN, Cardoso TM, de Carvalho DR, Castelani SA, Chaul JCM, Cerri CE, Costa FA, da Costa CDF, Coudel E, Coutinho AC, Cunha D, D’Antona A, Dezincourt J, Dias-Silva K, Durigan M, Esquerdo JCDM, Feres J, Ferraz SFB, Ferreira AEM, Fiorini AC, da Silva LVF, Frazao FS, Garrett R, Gomes AS, Goncalves KS, Guerrero JB, Hamada N, Hughes RM, Igliori DC, Jesus EC, Juen L, Junior M, Junior JMBO, Junior RCO, Junior CS, Kaufmann P, Korasaki V, Leal CG, Leitao R, Lima N, Almeida MFL, Lourival R, Louzada J, Nally RM, Marchand S, Maues MM, Moreira FMS, Morsello C, Moura N, Nessimian J, Nunes S, Oliveira VHF, Pardini R, Pereira HC, Pompeu PS, Ribas CR, Rossetti F, Schmidt FA, da Silva R, da Silva RCVM, da Silva TFMR, Silveira J, Siqueira JV, de Carvalho TS, Solar RRC, Tancredi NSH, Thomson JR, Torres PC, Vaz-de-Mello FZ, Veiga RCS, Venturieri A, Viana C, Weinhold D, Zanetti R, Zuanon J (2013) A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Philos Trans R Soc B: Biol Sci 368:20120166CrossRefGoogle Scholar
  23. Garrison RW (1990) A synopsis of the genus Hetaerina with descriptions of four new species (Odonata: Calopterigidae). Trans Am Entomol Soc 116:175–259Google Scholar
  24. Garrison RW, von Ellenrieder N, Louton JA (2006) Dragonfly genera of the New World: an illustrated and annotated key to the Anisoptera. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  25. Garrison RW, von Ellenrieder N, Louton JA (2010) Damselfly genera of the New World: an illustrated and annotated key to the Zygoptera. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  26. Heino J (2014) Taxonomic surrogacy; numerical resolution and responses of stream macroinvertebrate communities to ecological gradients: are the inferences transferable among regions? Ecol Indic 36:186–194CrossRefGoogle Scholar
  27. Jackson DA (1993) Stopping rules in principal component analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214CrossRefGoogle Scholar
  28. Juen L, De Marco P Jr (2011) Odonate biodiversity in terra-firme forest streamlets in Central Amazonia: on the relative effects of neutral and niche drivers at small geographical extents. Insect Conserv Divers 4:265–274CrossRefGoogle Scholar
  29. Juen L, De Marco P Jr (2012) Dragonfly endemism in the Brazilian Amazon: competing hypotheses for biogeographical patterns. Biodivers Conserv 21:3507–3521CrossRefGoogle Scholar
  30. Kier G, Jens M, Dinerstein E, Ricketts TH, Küper W, Kreft H, Barthlott W (2005) Global patterns of plant diversity and floristic knowledge. J Biogeogr 32:1107–1116CrossRefGoogle Scholar
  31. Lencioni FAA (2005) Damselflies of Brazil, an illustrated indentification guide: I - the non-Coenagrionidae families. All Print Editora, São Paulo, BrazilGoogle Scholar
  32. Lencioni FAA (2006) Damselflies of Brazil, an illustrated indentification guide: II - Coenagrionidae families. All Print Editora, São Paulo, BrazilGoogle Scholar
  33. Loreau M, Oteng-Yeboah A, Arroyo MTK, Babin D, Barbault R, Donoghue M, Gadgil M, Häuser C, Heip C, Larigauderie A, Ma K, Mace G, Mooney HA, Perrings C, Raven P, Sarukhan J, Schei P, Scholes RJ, Watson RT (2006) Diversity without representation. Nature 442:245–246CrossRefGoogle Scholar
  34. May ML (1976) Thermoregulation in adaptation to temperature in dragonflies (Odonata: Anisoptera). Ecol Monogr 46:1–32CrossRefGoogle Scholar
  35. May ML (1991) Thermal adaptations of dragonflies, revisited. Adv Odonatol 5:71–88Google Scholar
  36. McCauley SJ (2007) The role of local and regional processes in structuring larval dragonfly distributions across habitat gradients. Oikos 116:121–133CrossRefGoogle Scholar
  37. Mendes TP, Oliveira-Junior JMB, Cabette HSR, Batista JD, Juen L (2017) Congruence and the biomonitoring of aquatic ecosystems: are Odonate larvae or adults the most effective for the evaluation of impacts. Neotrop Entomol 46:1–11CrossRefGoogle Scholar
  38. Miguel TB, Oliveira-Junior JMB, Ligeiro R, Juen J (2017) Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecol Indic 81:555–566CrossRefGoogle Scholar
  39. Monteiro-Júnior CS, Couceiro SRM, Hamada N, Juen L (2013) Effect of vegetation removal for road building on richness and composition of Odonata communities in Amazonia, Brazil. Int J Odonatol 16:135–144CrossRefGoogle Scholar
  40. Monteiro-Júnior CS, Espostio MC, Juen L (2016) Are the adult odonate species found in a protected area different from those present in the surrounding zone? A case study from eastern Amazonia. J Insect Conserv 20(4):643–652CrossRefGoogle Scholar
  41. Moura NG, Lees AC, Andretti CB, Davis BJW, Solar RRC, Aleixo A, Barlow J, Ferreira J, Gardner TA (2013) Avian biodiversity in multiple-use landscapes of the Brazilian Amazon. Biol Conserv 167:339–348CrossRefGoogle Scholar
  42. Nessimian JL, Venticinque E, Zuanon J, De Marco P Jr, Gordo M, Fidelis L, Batista JD, Juen L (2008) Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia 614:117–131CrossRefGoogle Scholar
  43. Oertli B (2008) The use of dragonflies in the assessment and monitoring of aquatic habitats. In: Cordoba-Aguilar A (ed) Model Organisms for Ecological and Evolutionary Research. Oxford University Press, Oxford, pp 79–95Google Scholar
  44. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos PM, Stevens HH, Wagner H (2015). Vegan: community ecology package. R package version 2.3–1. http://CRAN.R-project.org/package=vegan. Accessed 11 Feb 2013
  45. Oliveira-Junior JMB, Silva-Pinto NS, Cabette HSR, Juen L (2013) As variações na comunidade de Odonata (Insecta) em córregos podem ser preditas pelo Paradoxo do Plâncton? Explicando a riqueza de espécies pela variabilidade ambiental. EntomoBrasilis 6:1–8CrossRefGoogle Scholar
  46. Oliveira-Junior JMB, Shimano Y, Gardner TA, Hughes RM, De MPJ, Juen L (2015) Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small streams in the eastern Amazon. Austral Ecol 40(6):733–744CrossRefGoogle Scholar
  47. Oliveira-Junior JMB, De Marco P, Dias-Silva K, Leitão RP, Leal CG, Pompeu PS, Gardner TA, Hughes RM, Juen L (2017) Effects of human disturbance and riparian conditions on Odonata (Insecta) assemblages in eastern Amazon basin streams. Limnologica 66:31–39CrossRefGoogle Scholar
  48. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sc 11:1633–1644CrossRefGoogle Scholar
  49. Pereira DFG, Oliveira-Junior JMB, Juen L (2018) Environmental changes promote larger species of Odonata (Insecta) in Amazonian streams. Ecol Indic 98:179–192CrossRefGoogle Scholar
  50. Peres-Neto P, Jackson DA, Somers KM (2003) Giving meaningful interpretation to ordination axes: assessing loading significance in principal component analysis. Ecology 84:2347–2363CrossRefGoogle Scholar
  51. Pinto NS, Juen L, Cabette HSR, De Marco P Jr (2012) Fluctuating asymmetry and wing size of Argia tinctipennis Selys (Zygoptera: Coenagrionidae) in relation to riparian forest preservation status. Neotrop Entomol 41:178–185CrossRefGoogle Scholar
  52. Putz FE, Redford KH (2010) The importance of defining ‘forest’: tropical forest degradation, deforestation, long-term phase shifts, and further transitions. Biotropica 42:10–20CrossRefGoogle Scholar
  53. R Development Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/12. Accessed 11 Feb 2013
  54. Remsburg AJ, Olson AC, Samways MJ (2008) Shade alone reduces adult dragonfly (Odonata: Libellulidae) abundance. J Insect Behav 21:460–468CrossRefGoogle Scholar
  55. Rodrigues ME, Roque FO, Quintero JMO, Pena JCC, Sousa DC, De Marco P (2016) Nonlinear responses in damselfly community along a gradient of habitat loss in a savanna landscape. Biol Conserv 194:113–120CrossRefGoogle Scholar
  56. Schmidt-Kloiber A, Nijboer R (2004) The effect of taxonomic resolution on the assessment of ecological water quality classes. Hydrobiologia 516:269–283CrossRefGoogle Scholar
  57. Smith J, Samways MJ, Taylor S (2007) Assessing riparian quality using two complementary sets of bioindicators. Biodivers Conserv 16:2695–2713CrossRefGoogle Scholar
  58. Sponseller RA, Benfield EF, Valett HM (2001) Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshw Biol 46:1409–1424CrossRefGoogle Scholar
  59. Strahler AN (1957) Quantitative analysis of watershed geomorphology. Eos. Trans Am Geophys Union 38:913–920CrossRefGoogle Scholar
  60. Stribling JB, Moulton SR, Lester GT (2003) Determining the quality of taxonomic data. J N Am Benthol Soc 22:621–631CrossRefGoogle Scholar
  61. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecol Appl 12:354–363Google Scholar
  62. Whittaker RJ, Araujo MB, Paul J, Ladle RJ, Watson JEM, Willis KJ (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23CrossRefGoogle Scholar
  63. Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2004) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115:329–341CrossRefGoogle Scholar
  64. Zar JH (1999) Biostatistical analysis. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar

Copyright information

© Sociedade Entomológica do Brasil 2019

Authors and Affiliations

  1. 1.Instituto de Ciências e Tecnologia das ÁguasUniv Federal do Oeste do ParáSantarémBrasil
  2. 2.Lab de Ecologia e Conservação, Instituto de Ciências BiológicasUniv Federal do ParáBelémBrasil

Personalised recommendations