Neotropical Entomology

, Volume 48, Issue 4, pp 527–537 | Cite as

Effects of Wood Density on Aquatic Insect Communities in a Cuban Montane Rainforest Stream

  • B T MartínezEmail author
  • A T Quintana
  • Y T Cambas
  • F O Roque
Ecology, Behavior and Bionomics


We tested whether hardness or different wood carbon densities, considered as the concentration of carbon structural compounds, influence functional feeding groups and species richness of aquatic insects in a tropical stream. We expected that harder woods would harbor aquatic insect communities with species richness and functional food group profile different from softwoods. We also expected that collector-gatherers and collector-filterers will be more abundant in softwood because harder woods are less substrate suitable for biofilm production. Aquatic insects associated with the following plants were analyzed: Gomidesia lindeniana with high-density, Psychotria grandis with medium-density, and Meriania leucantha with low-density wood. Diptera and Ephemeroptera were the most abundant groups sampled in the woods. Psychotria grandis shows higher concentrations of lignin, cellulose, and hemicellulose, followed by G. lindeniana and M. leucantha. Breakdown rates are different among plant species with M. leucantha having four times highest breakdown rates and on average three more species in the species richness value. We did not find significant differences in the composition of insect species associated with the plants. We found evidence that the richness and functional organization of aquatic insect communities were mostly related to the breakdown rates and lignin amount of the woods. Plants that decompose faster on average have three more species and two more insect functional groups. Our findings suggest that the loss of high carbon density trees in tropical forests can affect aquatic biodiversity.


Aquatic macroinvertebrates riparian forest carbon densities colonization Cuban stream wood decomposition 



The authors acknowledge the grants from the National Council of Scientific and Technological Development (CNPq) and Centro Oriental de Ecosistemas y Biodiversidad (BIOECO). Denis Dennis Ávila helped with the experiment. F.O. Roque received fellowships from CNPq and Fundect. Adrian Barnett helped with the English.

Author’s contributions

BT, AT, and YT planned and executed the experimental work. BT and FO conducted data analyses and wrote the manuscript.

Supplementary material

13744_2019_670_MOESM1_ESM.doc (4.6 mb)
ESM 1 (DOC 4659 kb)


  1. Anderson MJ, Walsh DCI (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr 83:557–574CrossRefGoogle Scholar
  2. Baccini A, Walker W, Carvalho L, Farina M, Sulla-Menashe D, Houghton RA (2017) Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Sci Rep: eaam5962.
  3. Baptista DF, Buss DF, Dias LG, Nessimian JL, Da Silva ER, De Moraes Neto AHA, Carvalho SN, De Oliveira MA, Andrade LR (2006) Functional feeding groups of Brazilian Ephemeroptera nymphs: ultrastructure of mouthparts. Ann Limnol 42:87–96CrossRefGoogle Scholar
  4. Bertaso TRN, Spies MR, Kotzian CB, Flores MLT (2015) Effects of forest conversion on the assemblages’ structure of aquatic insects in subtropical regions. Rev Bras Entomol 59:43–49CrossRefGoogle Scholar
  5. Borhidi A (1992) Phytogeography and vegetation ecology of Cuba. Nordic J Bot 12:470–470CrossRefGoogle Scholar
  6. Boyero L, Pearson RG, Hui C, Gessner MO, Pérez J, Alexandrou MA, Graça AS, Cardinale BJ, Albariño RJ, Arunachalam M, Barmuta LA, Boulton AJ, Bruder A, Callisto M, Chauvet E, Death RG, Dudgeon D, Encalada AC, Ferreira V, Figueroa R, Flecker AS, Gonçalves Jr JF, Helson J, Iwata T, Jinggut T, Mathooko J, Mathuriau C, M’Erimba C, Moretti MS, Pringle CM, Ramírez A, Ratnarajah L, Rincon J, Yule CM (2016) Biotic and abiotic variables influencing plant litter breakdown in streams: a global study. Proc R Soc B 283: 20152664 doi:
  7. Braccia A, Batzer D (2001) Invertebrates associated with woody debris in a southeastern. U.S. forested floodplain wetland. SWS 21(1).[0018:IAWWDI]2.0.CO;2Google Scholar
  8. Capote RP, Berazaín R (1984) Clasificación de las formaciones vegetales de Cuba. Revista Jard Bot Nac Univ Habana 2:27–75Google Scholar
  9. Carrascal LM, Galván I, Gordo O (2009) Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118:68–690. CrossRefGoogle Scholar
  10. Cavanaugh KC, Gosnell JS, Davis SL, Ahumada J, Boundja P, Clark DB, Mugerwa B, Jansen PA, O’Brien TG, Rovero F, Sheil D, Vasquez R, Andelman S (2014) Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob Ecol Biogeogr 23(5).
  11. Courtney G, Merritt R, Teskey H, Foote BA (1996) Larvae of aquatic Diptera. In: Merritt RW, Cummins KW (eds) An introduction to the aquatic insects of North America. America, Kwendall/Hunt Publishing Company, USA, pp 484–514Google Scholar
  12. Cranston PS, McKie B (2006) Aquatic wood an insect perspective. In: Grove SJ, Hanula JL Insect biodiversity and dead wood: proceedings of a symposium for the 22nd international congress of entomology (eds) General technical report SRS-93, Asheville, NC.US Department of Agriculture Service, Southern Research Station, pp 9–14Google Scholar
  13. Dangles O, Malmqvist B (2004) Species richness–decomposition relationships depend on species dominance. Ecol Lett 7:395–402CrossRefGoogle Scholar
  14. Díez J, Elosegi A, Chauvet E, Pozo J (2002) Breakdown of wood in the Agüera stream. Freshw Biol 47:2205–2215CrossRefGoogle Scholar
  15. Drury DM, Kelso WE (2000) Invertebrate colonization of woody debris in coastal plain streams. Hydrobiologia 434:63–72CrossRefGoogle Scholar
  16. Eggert SL, Wallace JB (2007) Wood biofilm as a food resource for stream detritivores. Limnol Oceanogr 52:1239–1245CrossRefGoogle Scholar
  17. Eggert SL, Wallace JB, Meyer JL, Webster JR (2012) Storage and export of organic matter in a headwater stream: responses to long-term detrital manipulations. Ecosphere 3:1–25CrossRefGoogle Scholar
  18. Epler JH (1995) Identification manual for the larval Chironomidae (Diptera) of Florida. State of Florida Department of Environmental Protection. Division of Water Facilities Tallahassee, Florida, p 317Google Scholar
  19. Epler JH (2001) Identification manual for the larval Chironomidae (Diptera) of North and South Carolina. North Carolina Department of Environment and Natural Resources, Raleigh, NC, p 526Google Scholar
  20. Flores L, Larrañaga A, Díez J, Elosegi A (2011) Experimental wood addition in streams: effects on organic matter storage and breakdown. Freshw Biol 56:2156–2167CrossRefGoogle Scholar
  21. Graça MA, Cressa C, Gessner M, Feio MJ, Callies KA, Barrios C (2001) Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshw Biol 46:947–957CrossRefGoogle Scholar
  22. Harrison RD, Tan S, Plotkin JB, Slik F, Detto M, Brenes T, Itoh A, Davies SJ (2013) Consequences of defaunation for a tropical tree community. Ecol Lett 16:687–694CrossRefGoogle Scholar
  23. Heino J, Ilmonen J, Paasivirta L (2014) Continuous variation of macroinvertebrate communities along environmental gradients in northern streams. Boreal Env Res 19:21–38Google Scholar
  24. Hobbie SE (2008) Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology 89:2633–2644CrossRefGoogle Scholar
  25. Höskuldsson A (1988) PLS regression methods. J Chemom 2:211–228CrossRefGoogle Scholar
  26. Karlsson OM, Richardson JS, Kiffney PM (2005) Modelling organic matter dynamics in headwater streams of south-western British Columbia, Canada. Ecol Model 183:463–476CrossRefGoogle Scholar
  27. Kluge N (1991) Efímeras cubanas de la familia Baetidae (Ephemeroptera) I: Géneros Callibaetis, Cloeodes y Paracloeodes. Zool Zh 12:128–135Google Scholar
  28. Kluge N (1993) A revision of Leptophlebiidae from Cuba (Ephemeroptera). Zoosyst Ross 2:247–285Google Scholar
  29. Kluge N, Naranjo C (1990) Efímeras de la familia Leptohyphidae (Ephemeroptera) de Cuba. Zool Zh 49:564–576Google Scholar
  30. Lake PS (2000) Disturbance, patchiness, and diversity in streams. J N Am Benthol Soc 19:573–592CrossRefGoogle Scholar
  31. Ligeiro R, Melo AS, Callisto M (2010) Spatial scale and the diversity of macroinvertebrates in a Neotropical catchment. Freshw Biol 55:424–435CrossRefGoogle Scholar
  32. Magoulick DD (1998) Effect of wood hardness, condition, texture and substrate type on community structure of stream invertebrates. Am Midl Nat 139:187–200CrossRefGoogle Scholar
  33. Maunder M, Leiva A, Valentín ES, Stevenson DW, Rodríguez PA, Meerow AW, Mejía M, Clubbe C, Ortega JF (2008) Plant Conservation in the Caribbean Island Biodiversity Hotspot. Bot Rev 74:197–207CrossRefGoogle Scholar
  34. McKie B, Cranston PS (2001) Colonization of experimentally immersed wood in southeastern Australia: responses of feeding groups to changes in riparian vegetation. Hydrobiologia 45:1–14CrossRefGoogle Scholar
  35. Merritt RW, Cummins KW (1996) An introduction to the aquatic insects of North America. 3rd.ed. Dubuque, Iowa: Kendall/Hunt Pub,CoGoogle Scholar
  36. Oliveira ALH, Nessimian JL (2010) Spatial distribution and functional feeding groups of aquatic insect communities in Serra da Bocaina streams, southeastern Brazil. Acta Limnol Bras 22:424–441CrossRefGoogle Scholar
  37. Osuri AM, Ratnam J, Varma V, Loayza PA, Astaiza JH, Bradford M, Fletcher C, Hockemba MN, Jansen PA, Kenfack D, Marshall AR, Ramesh BR, Rovero F, Sankaran M (2016) Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat Commun 7:11351. CrossRefGoogle Scholar
  38. Poff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC (2006) Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J N Am Benthol Soc 25:730–755CrossRefGoogle Scholar
  39. Poorter L, Van der Sande MT, Thompson J, Arets EJMM, Alarcón A, Sánchez JA, Ascarrunz N, Balvanera P, Guzmán GB, Boit A, Bongers F, Carvalho FA, Casanoves F, Tenorio GC, Costa FRC, Castilho CV, Duivenvoorden JF, Dutrieux LP, Enquist BJ, Méndez FF, Finegan B, Gormley LHL, Healey JR, Hoosbeek MR, Manríquez GI, Junqueira AB, Levis C, Licona JC, Lisboa LS, Magnusson WE, Ramos MM, Yrizar AM, Martorano LG, Maskell LC, Mazzei L, Meave JA, Mora F, Muñoz R, Nytch C, Pansonato MP, Parr TW, Paz H, García EAP, Rentería LY, Velazquez JR, Rozendaal DMA, Ruschel AR, Sakschewski B, Negret BS, Schietti J, Simões M, Sinclair FL, Souza PF, Souza FC, Stropp J, ter Steege H, Swenson NG, Thonicke K, Toledo M, Uriarte M, Van der Hout P, Walker P, Zamora N, Claros MP (2015) Diversity enhances carbon storage in tropical forests. Glob Ecol Biogeogr 24:1314–1328CrossRefGoogle Scholar
  40. R Core Team (2018) R: A Language and Environment for Statistical Computing.
  41. Spanhoff B, Meyer E (2004) Breakdown rates of wood in streams. J N Am Benthol Soc 23:189–197CrossRefGoogle Scholar
  42. StatSoft Inc (2004) STATISTICA (data analysis software system), version 7.
  43. Sullivan MJP, Talbot J, Lewis SL, Phillips OL, Qie L, Begne SK, Chave J, Cuni-Sanchez A, Hubau W, Gonzalez GL, Miles L, Monteagudo-Mendoza A, Sonké B, Sunderland T, Ter Steege H, White LJT, Affum-Baffoe K, Aiba S, Cristo de Almeida E, Almeida de Oliveira E, Alvarez-Loayza P, Dávila EA, Andrade A, Aragão LEOC, Ashton P, Aymard GAC, Baker TR, Balinga M, Banin LF, Baraloto C, Bastin JF, Berry N, Bogaert J, Bonal D, Bongers F, Brienen R, Camargo JLC, Cerón C, Moscoso VC, Chezeaux E, Clark CJ, Pacheco AC, Comiskey JA, Valverde FC, Coronado ENH, Dargie G, Davies SJ, De Canniere C, Djuikouo MNK, Doucet JL, Erwin TL, Espejo JS, Ewango CEN, Fauset S, Feldpausch TR, Herrera R, Gilpin M, Gloor E, Hall JS, Harris DJ, Hart TB, Kartawinata K (2017) Diversity and carbon storage across the tropical forest biome. Sci Rep 7:39102. CrossRefGoogle Scholar
  44. Tank JL, Dodds WK (2003) Nutrient limitation of epilithic and epixylic biofilms in 10 North American streams. Freshw Biol 48:103–1049CrossRefGoogle Scholar
  45. Tank JL, Wintherbourn MJ (1995) Biofilm development and invertebrate colonization of wood in four New Zealand streams of contrasting pH. Freshw Biol 34:303–315CrossRefGoogle Scholar
  46. Valente-Neto F, Koroiva R, Fonseca-Gessner AA, Roque FO (2015) The effect of riparian deforestation on macroinvertebrates associated with submerged woody debris. Aquat Ecol 49:115–125CrossRefGoogle Scholar
  47. Vanderwerf CA, Brewster RQ, Mc Ewen WE (1981) Curso Práctico de Química Orgánica. Editorial Pueblo y Educación, p 318Google Scholar
  48. Vought LBM, Kullberg A, Petersen RC (1998) Effect of riparian structure, temperature and channel morphometry on detritus processing in channelized and natural woodland streams in southern Sweden. Aquat Conservat Mar Freshwat Ecosyst 8:273–285CrossRefGoogle Scholar
  49. Webster JR, Benfield EF, Ehrman TP, Schaeffer MA, Tank JL, D’Angelo DJ (1999) What happens to allochthonous material that falls into streams? Freshw Biol 41:687–705CrossRefGoogle Scholar
  50. Webster J, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567–594CrossRefGoogle Scholar
  51. White DS, Brigham WU (1996) Aquatic Coleoptera. In: Merritt RW, Cummins KW (eds) Introduction to the aquatic insects of North America Kendall/Hunt Publ. Co., Iowa, pp 399–473Google Scholar
  52. Zhou L, Dai L, Gu H, Zhong L (2007) Review on the decomposition and influence factors of coarse woody debris in forest ecosystem. J For Res 18:48–54CrossRefGoogle Scholar
  53. Zuur AF, Ieno EN (2016) A protocol for conducting and presenting results of regression-type analyses. Methods Ecol Evol 7:636–645CrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2019

Authors and Affiliations

  1. 1.Program in Ecology and ConservationUFMSCampo GrandeBrasil
  2. 2.Lab de Ecologia, Programa de Pós Graduação em Ecologia e ConservaçãoCampo GrandeBrasil
  3. 3.Facultad de Biología, Depto de Biología Animal y HumanaUniv de La HabanaLa HabanaCuba
  4. 4.Facultad de Ciencias Naturales, Depto de BiologíaUniv de OrienteSantiago de CubaCuba
  5. 5.Lab de Ecologia, Centro de Ciencias Biológicas e da SaúdeUniv Federal de Mato Grosso do SulCampo GrandeBrasil
  6. 6.Centre for Tropical Environmental and Sustainability Science (TESS)James Cook UnivCairnsAustralia

Personalised recommendations