Neotropical Entomology

, Volume 48, Issue 2, pp 349–355 | Cite as

Contamination Route of Leaf-Cutting Worker Ants Analyzed Through a Fat-Soluble Tracer Dye in Toxic Bait

  • L C Forti
  • R S CamargoEmail author
  • A P P Andrade
  • G C Catalani
  • K K A Sousa
  • A A C Silva
  • N Caldato
  • V M Ramos
Pest Management


Our study seeks to discover contamination routes of leaf-cutting worker ants during chemical control by formicide baits. To do so, toxic baits containing fat-soluble tracer dye were provided to colonies of three subspecies of Acromyrmex under laboratory conditions, in order to assess the proportion of dyed workers by size category, as well as dyed internal morphological structures. Results showed that nearly 50% of the workers come into contact with the active ingredient, since the internal structures of their bodies are dyed by the fat-soluble tracer dye within the first 24 h from contact with the toxic bait. In addition, the three subspecies of leaf-cutting ants present a similarity as to the contamination of their workers, probably due to their specialized behavior performed during the growth of the fungus garden with the baits. We conclude that the workers’ pattern of behavior during fungus garden growth was the main means for dispersion of a fat-soluble substance among approximately half of the nest mates in our experiments, serving as a model for further studies on contamination of worker ants with insecticides.


Acromyrmex subterraneus subterraneus Acromyrmex subterraneus brunneus Acromyrmex subterraneus molestans 


Author Contribution Statement

L.C. Forti, R.S. Camargo, and A.P.P. Andrade planned, designed, and executed experimental work. L.C. Forti, R.S. Camargo, and A.P.P. Andrade conducted data analyses. L.C. Forti, R.S. Camargo, A.P.P. Andrade, G.C. Catalani, K.K.A. Sousa, A.A.C. Silva, N. Caldato, and V.M. Ramos wrote the manuscript.

Funding Information

We would like to thank the Coordination for the Improvement of Higher Education Personnel [Coordenadoria de Aperfeiçoamento de Nível Superior] (CAPES) for the scholarship granted to R. S. Camargo. L. C. Forti gratefully acknowledges the support from the National Council for Scientific and Technological Development [Conselho Nacional de Pesquisa e Tecnologia] (CNPq) (Grant No. 301167/2003-6).


  1. Andrade APP, Forti LC, Moreira AA, Boaretto MAC, Ramos VM, Matos CAO (2002) Behavior of Atta sexdens rubropilosa (Hymenoptera: Formicidae) workers during the preparation of the leaf substrate for symbiont fungus culture. Sociobiology 40(2):293–306Google Scholar
  2. Billen J (1990) A survey of the glandular system of fire ants, Applied myrmecology: a world perspective, vol xv. Westview, Boulder, pp 85–94Google Scholar
  3. Boaretto MAC (2000) Seleção de substratos com potencial para uso em iscas granuladas para as saúvas Atta capiguara Gonçalves, 1944 e Atta bisphaerica Forel, 1908 (Hymenoptera: Formicidae) e isolamento do fungo simbionte. 161p. Tese (Doutorado em Agronomia – Proteção de Plantas). Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, SPGoogle Scholar
  4. Britto JS, Forti LC, Caldato N, Zanuncio JC, Oliveira MA, Bonetti Filho RZ, Loeck AE, Lemes PG, Nagamoto NS, Camargo RS (2016) Use of alternatives to PFOS, its salts and PFOSF for the control of leaf-cutting ants Atta and Acromyrmex. Int J Res Environ Stud 3:11–92Google Scholar
  5. Bueno OC (2005) Filtro infrabucal e glândulas pós-faríngeas da saúva-limão Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae). 107f. Tese (Livre Docente), Instituto de Biociências, Universidade Estadual Paulista, Rio ClaroGoogle Scholar
  6. Bueno OC, Fresneau D, Schineider OM, Silveira C, Bueno FC (2001) Fluxo de corantes hidrossolúveis e lipossolúveis no trato digestivo de operárias de Atta sexdens L. 1758 (Hymenoptera: Formicidae). Anais do XV Encontro de Mirmecologia, Londrina, PR, BrasilGoogle Scholar
  7. Caetano FH (1984) Morfologia comparada do trato digestivo de formigas da subfamília Myrmicinae (Hymenoptera: Formicidae). Papéis Avulsos de Zoologia 35(23):257–305Google Scholar
  8. Caetano FH (1990) Morphology of the digestive tract and associated excretory organs of ants. In: Vander Meer RK, Jaffé K (eds) Applied myrmecology: a world perspective. Westview Press, Boulder, pp 119–132Google Scholar
  9. Camargo RS, Lopes JFS, Andrade APP, Ottati ALT (2007) Age polyethism in the leaf-cutting ant Acromyrmex subterraneus brunneus Forel, 1911 (Hym., Formicidae). J Appl Entomol 131(2):139–145. CrossRefGoogle Scholar
  10. Camargo RS, Puccini C, Forti LC, Matos CAO (2017) Allogrooming, self-grooming, and touching behavior: contamination routes of leaf-cutting ant workers using a fat-soluble tracer dye. Insects 8(2):59. CrossRefGoogle Scholar
  11. Chapman RF (1998) The insects: structure and function. Cambridge university press, CambridgeCrossRefGoogle Scholar
  12. Diniz EA, Bueno OC (2009) Substrate preparation behaviors for the cultivation of the symbiotic fungus in leaf-cutting ants of the genus Atta (Hymenoptera: Formicidae). Sociobiology 53(3):651–666Google Scholar
  13. Diniz EA, Bueno OC (2010) Evolution of substrate preparation behaviors for cultivation of symbiotic fungus in Attine ants (Hymenoptera: Formicidae). J Insect Behav 23(3):205–214. CrossRefGoogle Scholar
  14. Echols HW (1966) Assimilation and transfer of mirex in colonies of Texas leaf-cutting ants. J Econ Entomol 59(6):1336–1338. CrossRefGoogle Scholar
  15. Febvay G, Kermarrec A (1981) Morphologie et fonctionnement du filtreinfrabuccal chez une attine Acromyrmex octospinosus (Reich) (Hymenoptera: Formicidae): role de la poche infrabuccale. Int J lnsect Morphol Embryol 10(5–6):441–449. CrossRefGoogle Scholar
  16. Febvay G, Kermarrec A (1986) Digestive physiology of leaf-cutting ants. In: Lofgren CS, Vandemeer RK (eds) Fire ants and leaf-cutting ants: biology and management. Westview Press, Boulder, pp 274–288Google Scholar
  17. Forbes J, McFarlane AM (1961) The comparative anatomy of digestive glands in the female castes and the male of Camponotus pennsylvanicus DeGeer (Formicidae, Hymenoptera). J NYork Entomol Soc 69(2):92–103Google Scholar
  18. Forti LC, Andrade APP, Sousa KKA, Caldato N, Camargo RS, Ramos VM, JFS L (2018) Morphometric analysis of characters of three subspecies of leaf-cutting ants, Acromyrmex subterraneus (Hymenoptera: Formicidae). Int J Agric Innov Res 6(6):325Google Scholar
  19. Fowler HG (1983) Latitudinal gradients and diversity of the leaf-cutting ants. Rev Biol Trop 31(2):213–216Google Scholar
  20. Fowler HG, Silva P, Forti LC, Silva VP, Saes NB (1986) Economics of grass-cutting ants. In: Lofgren CS, Vander Meer RK (eds) Fire ants and leaf-cutting ants: biology and management. Westview Press, Boulder, pp 18–35Google Scholar
  21. Fowler HG, Forti LC, Brandão CRF, Delabie JHC, Vasconcelos HL (1991) Ecologia nutricional de formigas. In: Pazzini AR, Parra JRP (eds) Ecologia nutricional de insetos e suas implicações no manejo de pragas. Manole, São Paulo, pp 131–223Google Scholar
  22. Lopes JFS, Forti LC, Camargo RS (2004) The influence of the scout upon the decision-making process of recruited workers in three Acromyrmex species (Formicidae: Attini). Behav Process 67(3):471–476. CrossRefGoogle Scholar
  23. Nagamoto NS (1998) Metodologia para seleção de inseticidas visando confecção de iscas tóxicas para formigas cortadeiras (Hymenoptera, Formicidae). 94p. Dissertação (Mestrado em Agronomia – Proteção de Plantas), Universidade Estadual Paulista, Botucatu, SPGoogle Scholar
  24. Ortiz G, Vieira AS, Bueno OC (2017) Toxicological and morphological comparative studies of insecticides action in leaf-cutting ants. Int J Agric Innov Res 6(3):516–522Google Scholar
  25. Peregrine DJ, Cherrett JM (1976) Toxicant spread in laboratory colonies of the leaf-cutting ant. Ann Appl Biol 84(1):128–133. CrossRefGoogle Scholar
  26. Peregrine DJ, Percy HC, Cherrett JM (1972) Intake and possible transfer of lipid by the post-pharyngeal glands of Atta cephalotes L. Entomol Exp Appl 15(2):248–249CrossRefGoogle Scholar
  27. Schnellman RG, Manning RO (1990) Perfluooctane sulfonamide: a structure novel uncoupler of oxidative phosphorylation. Biochim Biophys Acta 1016(3):344–348. CrossRefGoogle Scholar
  28. Schoeters E, Billen J (1997) The post-pharyngeal gland in Dinoponera ants (Hymenoptera: Formicidae): unusual morphology and changes during the secretory process. Int J Insect Morphol Embryol 25(4):443–447CrossRefGoogle Scholar
  29. Silva LC, Camargo RS, Forti LC, Matos CAO, Travaglini RV (2015) Do Atta sexdens rubropilosa workers prepare leaves and bait pellets in similar ways to their symbiotic fungus? Sociobiology 62(4):484–493. Google Scholar
  30. Sousa KKA, Camargo RS, Forti LC (2017) Communication or toxicity: what is the effect of cycloheximide on leaf-cutting ant workers? Insects 8(4):126. CrossRefGoogle Scholar
  31. Stradling DJ (1978) The influence of size on foraging in the ant, Atta cephalotes, and the effect of some plant defence mechanisms. J Anim Ecol 47(1):173–188. CrossRefGoogle Scholar
  32. Weber NA (1956) Treatment of substrate by fungus-growing ants. Anat Rec 125:604–605Google Scholar
  33. Wetterer JK (1999) The ecology and evolution of worker size-distribution in leaf-cutting ants (Hymenoptera: Formicidae). Sociobiology 34(1):119–144Google Scholar
  34. Wilson EO (1980a) Caste and division of labor in leaf cutter ants (Hymenoptera, Formicidae: Atta). I: the overall pattern in A. sexdens. Behav Ecol Sociobiol 7(2):143–156CrossRefGoogle Scholar
  35. Wilson EO (1980b) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). II. The ergonomic optimization of leaf cutting. Behav Ecol Sociobiol 7(2):157–165CrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2018

Authors and Affiliations

  1. 1.Lab of Social Insects-Pests, Vegetal Protection Dept, School of Agricultural SciencesSão Paulo State UnivBotucatuBrasil
  2. 2.Agronomy Dept, College of Agricultural SciencesUniv of Western São PauloPresidente PrudenteBrasil
  3. 3.College of Biological SciencesFederal Univ of PiauíTeresinaBrasil

Personalised recommendations