Advertisement

Neotropical Entomology

, Volume 48, Issue 2, pp 340–348 | Cite as

How Do Collaria oleosa and Brachiaria spp. Respond to Increase in Carbon Dioxide Levels?

  • D M Silva
  • A M AuadEmail author
  • J C Moraes
  • S E B Silva
Pest Management
  • 71 Downloads

Abstract

The current study determines the indirect effect of CO2 level increase on Collaria oleosa (Distant, 1863) (Hemiptera: Miridae) fed on Brachiaria spp. (Poaceae), at two trophic levels, and evaluates resistance to these forages against the insect pest. Mirid bug nymphs and host plant were maintained under four climate environments: (1) nymphs and plants kept at 400 ppm CO2 level; (2) nymphs kept at 400 ppm CO2 level and fed on plants grown at 700 ppm CO2 level; (3) nymphs kept at 700 ppm CO2 level and fed on plants grown at 400 ppm CO2 level; (4) nymphs and plants kept at 700 ppm CO2 level. A totally randomized design was employed with 50 replications. Mean duration and survival of each instar and nymphal phase of insect, subjected to different climate scenarios and food sources, were evaluated. High CO2 levels promote changes in the plant, which trigger changes in the biology of C. oleosa, especially when the insects are kept at the current CO2 level. Moreover, since longer developmental period and shorter survival rates will induce the reduction of the number of generations and number of specimens, it may be underscored that B. brizantha species resistance will be maintained in future climate scenarios. Similarly, genotypes of B. ruziziensis demonstrated that they will be resistant at current and future CO2 levels.

Keywords

Mirid bug congo grass forage climate change 

Notes

Acknowledgments

We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Brazil) for supporting our research.

Authors’ Contribution

DMS and AMA planned and designed experimental work; DMS performed the experiments; DMS, AMA, and JCM analyzed the data; DMS, AMA, JCM, and SEBS wrote the manuscript.

References

  1. Agrell J, Mcdonald EP, Lindroth RL (2000) Effect of CO2 and light on tree-insect interactions. Oikos 88:259–272CrossRefGoogle Scholar
  2. Ainsworth EA, Roger A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270CrossRefGoogle Scholar
  3. Alencar CAB, Cóser AC, Martins CE, Oliveira RA (2010) Altura de capins e cobertura do solo sob adubação nitrogenada, irrigação e pastejo nas estações do ano irrigação e pastejo nas estações do ano. Acta Sci Agron 32:21–27CrossRefGoogle Scholar
  4. Amiri-Jami AR, Sadeghi H, Shoor M (2012) The performance of Brevicoryne brassicae ornamental cabbages grown in CO2-enriched atmospheres. J Asia Pac Entomol 15:249–253CrossRefGoogle Scholar
  5. Auad AM, Pimenta DS, Silva DM, Monteiro PH, Resende TT (2011) Collaria oleosa (Hemiptera: Miridae) on Brachiaria ruziziensis and Pennisetum purpureum (Poaceae): characterization of injury and biological aspects. Rev Colomb Entomol 37:244–248Google Scholar
  6. Barbehenn RV (2005) Grasshoppers efficiently process C4 grass leaf tissues: implications for patterns of host-plant utilization. Entomol Exp Appl 116:209–217CrossRefGoogle Scholar
  7. Behmer ST (2009) Insect herbivore nutrient regulation. Annu Rev Entomol 54:165–187CrossRefGoogle Scholar
  8. Bettarini I, Vaccari F, Miglietta F (1998) Elevated CO2 concentrations and stomatal density: observations from 17 plant species growing in a CO2 spring in central Italy. Glob Chang Biol 4:17–22CrossRefGoogle Scholar
  9. Bezemer TM, Jones TH, Knigh KJ (1998) Long term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzys persicae and its parasitoid Aphidium matricariae. Oecologia 116:128–135CrossRefGoogle Scholar
  10. Bezemer TM, Jones TH, Newington JE (2000) Effects of carbon dioxide and nitrogen fertilization on phenolic content in Poa annua. L. Biochem Syst Ecol 28:839–846CrossRefGoogle Scholar
  11. Chen FJ, Wu G, Ge F (2004) Impacts of elevated CO2 on the population abundance and reproductive activity of aphid Sitobion avenae Fabricius feeding on spring wheat. J Appl Entomol 128:723–730CrossRefGoogle Scholar
  12. Chen FJ, Feng GE, Su JW (2005) An improved open-top chamber for research on the effects of elevated CO2 on agricultural pests in the field. Chin J Ecol 24:585–590Google Scholar
  13. CO2.Earth: are we stabilizing yet? Earth’s CO2 homepage. Hawaii, 2018. Avaliable on: http://co2now.org/. Access on: 08 aug. 2018
  14. Coviella CE, Stipanovic RD, Trumble JT (2002) Plant allocation to defensive compounds, interactions between elevated CO2 and nitrogen in transgenic cotton plants. J Exp Bot 53:323–331CrossRefGoogle Scholar
  15. Dias-Filho MB (2014) Diagnóstico das pastagens no Brasil. Embrapa Amazônia Oriental, Belém, Pará, BrasilGoogle Scholar
  16. Ferreira RB, Moraes JC, Auad AM, Fonseca MG (2013) Interaction of spittlebug and forage grass under different carbon dioxide concentrations. J Pest Sci 86:161–166CrossRefGoogle Scholar
  17. Fraks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci U S A 106:10343–10347CrossRefGoogle Scholar
  18. Goverde M, Erhardt A (2003) Effects of elevated CO2 on development and larval food-plant preference in the butterfly Coenonympha pamphilus (Lepidoptera, Satyridae). Glob Chang Biol 9:74–83CrossRefGoogle Scholar
  19. Gregory PJ, Johnson N, Newton AC, Ingram JSI (2009) Integrating pest and pathogens into the climate change food security debate. J Exp Bot 60:2827–2838CrossRefGoogle Scholar
  20. Guo H, Sun Y, Ren Q, Zhu-Salzman K, Kang L, Wang C (2012) Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. PLoS One 7:1–11Google Scholar
  21. Guo H, Sun Y, Li Y, Liu X, Zhang W, Ge F (2014) Elevated CO2 decreases the response of the ethylene signaling pathway in Medicago truncatula and increases the abundance of the pea aphid. New Phytol 201:279–291CrossRefGoogle Scholar
  22. Guo H, Peng X, Gu L, Wu J, Ge F, Sun Y (2017) Up-regulation of MPK4 increases the feeding efficiency of the green peach aphid under elevated CO2 in Nicotiana attenuata. J Exp Bot 68:5923–5935CrossRefGoogle Scholar
  23. Hattenschwiler S, Schafellner C (2004) Gypsy moth feeding in the canopy of a CO2-enriched mature forest. Glob Chang Biol 10:1899–1908CrossRefGoogle Scholar
  24. Herrick J, Maherali H, Thomas R (2004) Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO2 enrichment. New Phytol 162:387–396CrossRefGoogle Scholar
  25. Hunter MD (2001) Effects of elevated atmospheric carbon dioxide on insect plant interactions. Agric For Entomol 3:153–159CrossRefGoogle Scholar
  26. Instituto Brasileiro de Geografia e Estatística (IBGE) (2016) Produção da pecuária municipal. https://biblioteca.ibge.gov.br. 23 October 2017
  27. Instituto Brasileiro de Geografia e Estatística (IBGE) (2017) Indicadores IBGE: estatística da produção pecuária https://biblioteca.ibge.gov.br. 23 October 2017
  28. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change: the physical science basis. Cambridge University Press, New YorkGoogle Scholar
  29. Kissmann KG (1997) Plantas infestantes e nocivas. Basf, São Paulo, SP, BrasilGoogle Scholar
  30. Knepp RG, Hamilton JG, Mohan JE, Zangerl AR, Berenbaum MR, DeLucia EH (2005) Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New Phytol 167:207–218CrossRefGoogle Scholar
  31. Knepp RG, Hamilton JG, Zangerl AR, Berenbaum MR, DeLucia EH (2014) Foliage of oaks grown under elevated CO2 reduces performance of Antheraea polyphemus (Lepidoptera: Saturniidae). Environ Entomol 36:609–617CrossRefGoogle Scholar
  32. Lee KP, Behmer ST, Simpson SJ, Raubenheimer D (2002) A geometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval). J Insect Physiol 48:655–665CrossRefGoogle Scholar
  33. Martin P, Johnson SN (2011) Evidence that elevated CO2 reduces resistance to the European large raspberry aphid in some raspberry cultivars. J Appl Entomol 135:237–240CrossRefGoogle Scholar
  34. Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161CrossRefGoogle Scholar
  35. Maxwell FG, Jennings PR (1980) Breeding plants resistant to insects. Jonh Wiley &Sons, New York, p 683Google Scholar
  36. Robinson EA, Ryan GD, Newman JA (2012) A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol 194:321–336CrossRefGoogle Scholar
  37. Schoonhoven LM, Van Loon JJA, Dicke M (2005) Insect-plant biology. In: Oxford University Press. United Kingdom, OxfordGoogle Scholar
  38. Silva DM, Moraes JC, Auad AM, Fonseca MG, Oliveira SA, Silva SEB (2013a) Selection of signal grass genotypes for resistance to Collaria oleosa (Distant, 1883) (Hemiptera: Miridae). J Agric Biol Sci 8:385–390Google Scholar
  39. Silva DM, Moraes JC, Auad AM, Fonseca MG, Souza Sobrinho F (2013b) Genetic variability of Brachiaria ruziziensis clones to Collaria oleosa (Hemiptera: Miridae) based on leaf injuries. Am J Plant Sci 4:2418–2424CrossRefGoogle Scholar
  40. Souza Sobrinho F, Auad AM, Ledo FJS (2010) Genetic variability in Brachiaria ruziziensis for resistance to spittlebugs. Crop Breed Appl Biotechnol 10:83–88CrossRefGoogle Scholar
  41. Streck NA (2005) Climate change and agroecosystems: the effect of elevated CO2 and temperature on crop growth, development, and yield. Ciência Rural 35:730–740CrossRefGoogle Scholar
  42. Sun Y, Ge F (2011) How do aphids respond to elevated CO2? J Asia Pac Entomol 14:217–220CrossRefGoogle Scholar
  43. Sun Y, Cao H, Yin J, Kang L, Ge F (2010) Elevated CO2 changes the interactions between nematode and tomato genotypes differing in the JA pathway. Plant Cell Environ 33:729–739CrossRefGoogle Scholar
  44. Sun Y, Guo H, Yuan L, Wei J, Zhang W, Ge F (2015) Plant stomatal closure improves aphid feeding under elevated CO2. Glob Chang Biol 21:2739–2748CrossRefGoogle Scholar
  45. Sun Y, Guo H, Ge F (2016) Plant–aphid interactions under elevated CO2: some cues from aphid feeding behavior. Front Plant Sci 7:502Google Scholar
  46. Taiz L, Zeiger E (2004) Fisiologia vegetal. Artmed, Porto AlegreGoogle Scholar
  47. Taub DR, Miller B, Allen H (2008) Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob Chang Biol 14:565–575CrossRefGoogle Scholar
  48. Trębicki P, Dáder B, Vassiliadis S, Fereres A (2017) Insect–plant–pathogen interactions as shaped by future climate: effects on biology, distribution, and implications for agriculture. Insect Sci 24:975–989CrossRefGoogle Scholar
  49. Tubiello FN, Danatelli M, Stockle CO (2000) Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. Eur J Agron 13:179–189CrossRefGoogle Scholar
  50. Wu G, Chen FJ, Ge F (2006) Responses of multiple generations of cotton bollworm Helicoverpa armigera Hübner, feeding on spring wheat, to elevated CO2. J Appl Entomol 130:2–9CrossRefGoogle Scholar
  51. Yadugiri VT (2010) Climate change: the role of plant physiology. Curr Sci 99:423–425Google Scholar
  52. Yin J, Sun Y, Wu G, Parajulee MN, Ge F (2009) No effects of elevated CO2 on the population relationship between cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), and its parasitoid, Microplitis mediator Haliday (Hymenoptera: Braconidae). Agric Ecosyst Environ 132:267–275CrossRefGoogle Scholar
  53. Yin J, Yucheng S, Gang W, Feng G (2010) Effects of elevated CO2 associated with maize on multiple generations of the cotton bollworm, Helicoverpa armigera. Entomol Exp Appl 136:12–20CrossRefGoogle Scholar
  54. Zavala JA, Casteel CL, Delucia EH, Berenbaum MR (2008) Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proc Natl Acad Sci U S A 105:5129–5133CrossRefGoogle Scholar
  55. Zavala JA, Nabity PD, DeLucia EH (2013) An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu Rev Entomol 58:79–97CrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2018

Authors and Affiliations

  1. 1.Depto de EntomologiaUniv Federal de LavrasLavrasBrasil
  2. 2.Lab de EntomologiaEmbrapa Gado de LeiteJuiz de ForaBrasil

Personalised recommendations