Advertisement

Neotropical Entomology

, Volume 48, Issue 2, pp 332–339 | Cite as

Phylogeography Approach of Diloboderus abderus (Coleoptera: Melolonthidae) in the Southern Cone of America

  • I ValmorbidaEmail author
  • J A Arnemann
  • M A Cherman
  • C B Bevilacqua
  • C R Perini
  • G A Ugalde
  • J V C Guedes
Pest Management

Abstract

Diloboderus abderus (Sturm, 1826) (Coleoptera: Melolonthidae) is a serious soil pest of corn, wheat, oat, and natural and cultivated pastures in Argentina, Paraguay, Uruguay, and southern Brazil. Despite its economic importance, the genetic diversity and population structure of D. abderus remain unknown. We sequenced a fragment of the mitochondrial gene cytochrome oxidase I region (COI), of six populations of D. abderus from the Southern Cone of America. The mtDNA marker revealed a high haplotype diversity, high pairwise FST values, and significant genetic variations among populations. No correlation was found between genetic and geographical distances, yet the most common haplotype (Dab01) was present in four out of the six populations. Analysis of molecular variance showed that most of the variation was within populations of D. abderus. Tajima’s D and Fu’s FS tests indicated no evidence that D. abderus populations are under recent expansion. Our results indicate that genetic-based traits will likely remain localized or spread slowly, and management strategies need to be undertaken on a small scale.

Keywords

Dynastinae Pampa biome population genetics soil pest white grub 

Notes

Acknowledgments

We thank Isac Aires de Castro, Alberto Rohrig, Eduardo Bassan Bortoluzi, Luis Eduardo Curioletti, Andrés A. Risso, and Enrique Castiglioni for assisting with the sample collection. We also thank Ashley Dean for revising the English and CAPES for granting a scholarship to the first author. CBB was co-financed by the Brazilian Government (CAPES scholar, proceeding PNPD20132610 – 42002010008P0–UFSM/Engenharia Agrícola).

Author Contribution Statement

IV, JAA, and JVCG conceived and designed the analysis; IV, GAU, and CRP executed the experimental work; IV, JAA, and CBB performed the analysis; IV, JAA, MAC, and CRP drafted the manuscript; IV, JAA, JVCG, and MAC critically revised the manuscript.

Supplementary material

13744_2018_637_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 14 kb)

References

  1. Baucke O (1965) Notas taxonômicas e biológicas sobre Diloboderus abderus (Sturm, 1826) Coleoptera-Scarabaeidae-Dynastinae. Revista Fac Agron Vet 7:113–135Google Scholar
  2. Benefer CM, Blackshaw RP (2013) Molecular approaches for studying root herbivores. Advances in Insect Physiology. Academic Press, Cambridge, pp 219–255Google Scholar
  3. Cherman MA, Morón MA, Dal Prá E, Valmorbida I, Guedes JV (2014) Ecological characterization of white grubs (Coleoptera: Melolonthidae) community in cultivated and noncultivated fields. Neotrop Entomol 43(3):282–288.  https://doi.org/10.1007/s13744-014-02140 CrossRefGoogle Scholar
  4. Cherman MA, Guedes JV, Morón MA, Prá ED, Bigolin M (2013) White grubs (Coleoptera, Melolonthidae) in the “Planalto region”, Rio Grande do Sul state, Brazil: key for identification, species richness and distribution. Rev Bras entomol 57(3):271–278.  https://doi.org/10.1590/S0085-56262013000300005 CrossRefGoogle Scholar
  5. Clement M, Posada DC, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9(10):1657–1659.  https://doi.org/10.1046/j.1365-294x.2000.01020.x CrossRefGoogle Scholar
  6. Discover Life (2018) Diloboderus abderus. https://webarchiveorg/web/20150912180414/-http://wwwdiscoverlifeorg/20/m?kind=Diloboderus+abderus Accessed 10 Aug 2018Google Scholar
  7. Doskocil JP, Walker NR, Bell GE, Marek SM, Reinert JA, Royer TA (2008) Species composition and seasonal occurrence of Phyllophaga (Coleoptera: Scarabaeidae) infesting intensely managed bermudagrass in Oklahoma. J Econ Entomol 101:1624–1632.  https://doi.org/10.1093/jee/101.5.1624 CrossRefGoogle Scholar
  8. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol 10:564–567CrossRefGoogle Scholar
  9. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299Google Scholar
  10. Freeland JR, Petersen SD, Kirk H (2011) Molecular ecology. John Wiley e Sons, Chichester, pp 35–72CrossRefGoogle Scholar
  11. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925Google Scholar
  12. Galtier N, Nabholz B, Glémin S, Hurst GD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18(22):4541–4550.  https://doi.org/10.1111/j.1365-294X.2009.04380.x CrossRefGoogle Scholar
  13. Garlet J, Zauza EÂ, Ferreira F, Salvadori JR (2009) Danos provocados por coró-das-pastagens em plantas de eucalipto. Cienc Rural 39:575–576CrossRefGoogle Scholar
  14. Hartfield EA, Harris MK, Medina RF (2012) Population structure of the pecan nut casebearer Acrobasis nuxvorella throughout its geographical distribution. Agric For Entomol 14:119–125.  https://doi.org/10.1111/j.1461-9563.2011.00538.x CrossRefGoogle Scholar
  15. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6(1):13–23.  https://doi.org/10.1186/1471-2156-6-13 CrossRefGoogle Scholar
  16. Jong MA, Wahlberg N, Van Eijk M, Brakefield PM, Zwaan BJ (2011) Mitochondrial DNA signature for range-wide populations of Bicyclus anynana suggests a rapid expansion from recent refugia. PLoS One 22(6):e21385.  https://doi.org/10.1371/journal.pone.0021385 CrossRefGoogle Scholar
  17. Kang AR, Kim KG, Park JW, Kim I (2012) Genetic diversity of the dung beetle, Copris tripartitus (Coleoptera: Scarabaeidae), that is endangered in Korea. Entomol Res 42:247–261.  https://doi.org/10.1111/j.1748-5967.2012.00470.x CrossRefGoogle Scholar
  18. Karsten M, van Vuuren BJ, Barnaud A, Terblanche JS (2013) Population genetics of Ceratitis capitata in South Africa: implications for dispersal and pest management. PLoS One 8(1):e54281.  https://doi.org/10.1371/journal.pone.0054281 CrossRefGoogle Scholar
  19. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  20. Landvik M, Miraldo A, Niemelä P, Valainis U, Cibuļskis R, Roslin T (2017) Evidence for geographic substructuring of mtDNA variation in the East European hermit beetle (Osmoderma barnabita). Nat Conserv 19:171–189.  https://doi.org/10.3897/natureconservation.19.12877 CrossRefGoogle Scholar
  21. Lee GE, Han T, Jeong J, Kim SH, Park IG, Park H (2015) Molecular phylogeny of the genus Dicronocephalus (Coleoptera, Scarabaeidae, Cetoniinae) based on mtCOI and 16S rRNA genes. ZooKeys 501:63–87.  https://doi.org/10.3897/zookeys.501.8658 CrossRefGoogle Scholar
  22. Lefort MC, Barratt BI, Marris JW, Boyer S (2013) Combining molecular and morphological approaches to differentiate the pest Costelytra zealandica (white) (Coleoptera: Scarabeidae: Melolonthinae) from the non-pest Costelytra brunneum (Broun) at the larval stage. N Z Entomol 36:15–21.  https://doi.org/10.1080/00779962.2012.742369 CrossRefGoogle Scholar
  23. Leigh JW, Bryant D (2015) Popart: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116.  https://doi.org/10.1111/2041-210X.12410
  24. Lesieur V, Martin JF, Weaver DK, Hoelmer KA, Smith DR, Morrill WL, Kadiri N, Peairs FB, Cockrell DM, Randolph TL, Waters DK (2016) Phylogeography of the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae): implications for pest management. PLoS One 11(12).  https://doi.org/10.1371/journal.pone.0168370
  25. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinf 25:1451–1452.  https://doi.org/10.1093/bioinformatics/btp187 CrossRefGoogle Scholar
  26. Liu WG, Eberle J, Bai M, Yang XK, Ahrens D (2015) A phylogeny of Sericini with particular reference to Chinese species using mitochondrial and ribosomal DNA (Coleoptera: Scarabaeidae). Org Divers Evol 15:343–350.  https://doi.org/10.1007/s13127-015-0204-z CrossRefGoogle Scholar
  27. Miller LJ, Allsopp PG (2005) Phylogeography of the scarab beetle Antitrogus parvulus Britton (Coleoptera: Scarabaeidae) in south eastern Queensland, Australia. Austral Entomol 44:29–36.  https://doi.org/10.1111/j.1440-6055.2005.00416.x CrossRefGoogle Scholar
  28. Miller NJ, Sappington TW (2017) Role of dispersal in resistance evolution and spread. Curr Opin Insect Sci 21:68–74.  https://doi.org/10.1016/j.cois.2017.04.005 CrossRefGoogle Scholar
  29. Morey CS, Alzugaray R (1982) Biologia y comportamiento de Diloboderus abderus (Sturm) (Coleoptera: Scarabaeidae). Dirección de Sanidad Vegetal, Montevideo p:1–44Google Scholar
  30. Morrone JJ (2000) What is the Chacoan subregion? Neotrop 46:51–68Google Scholar
  31. Oliveira LJ, Salvadori JR (2012) Rhyzophagous beetles (Coleoptera: Melolonthidae). In: Panizzi AR, Parra JRP (eds) Insect bioecology and nutrition for integrated pest management. CRC, Boca Raton, pp 353–368CrossRefGoogle Scholar
  32. Pereira PRVS, Salvadori JR (2006) Guia para identificação de corós rizófagos (Coleoptera: Scarabaeoidea: Melolonthidae) comumente encontrados em cereais de inverno, milho e soja no norte do Rio Grande do Sul http://wwwcnptembrapabr/biblio/co/p_co204htm Accessed 13 Nov 2017
  33. Puillandre N, Dupas S, Dangles O, Zeddam JL, Capdevielle-Dulac C, Barbin K, Torres-Leguizamon M, Silvain JF (2008) Genetic bottleneck in invasive species: the potato tuber moth adds to the list. Biol Invasions 10:319–333.  https://doi.org/10.1007/s10530-007-9132-y CrossRefGoogle Scholar
  34. Quintana VLP, Kohli R,Gómez MMG (2004) Avances y resultados de la investigación del trigo en el Paraguay. Ministerio de Agricultura y Ganadería, Asunción, Paraguay pp 1–50Google Scholar
  35. Ramírez LC, Alonso CP (2016) Two late pleistocene members of the white grub complex, one of the most destructive insect pests of turfgrasses. Rev Bras Paleontolog 19:531–536CrossRefGoogle Scholar
  36. Ratcliffe BC, Jameson ML, Figueroa L, Cave RD, Paulsen MJ, Cano EB, Beza-Beza C, Jimenez-Ferbans L, Reyes-Castillo P (2015) Beetles (Coleoptera) of Peru: a survey of the families. Scarabaeoidea J Kansas Entomol Soc 88:186–207Google Scholar
  37. Richards NK, Glare TR, Hall DC, Bay H (1997) Genetic variation in grass grub, Costelytra zealandica, from several regions. Proc. N Z Plant Prot Conf 50:338–343Google Scholar
  38. Rodriguero MS, Lanteri AA, Guzmán NV, Carús Guedes JV, Confalonieri VA (2016) Out of the forest: past and present range expansion of a parthenogenetic weevil pest, or how to colonize the world successfully. Ecol Evol 6:5431–5445.  https://doi.org/10.1002/ece3.2180 CrossRefGoogle Scholar
  39. Salvadori JR, Pereira, PRVS (2006) Manejo integrado de corós em trigo e culturas associadas. http://wwwcnptembrapabr/biblio/co/p_co203htm Accessed 14 Nov 2017Google Scholar
  40. Shankar P, Kulkarni VM, Kumar LS (2015) Male biased gene flow in banana pseudostem weevil (Odoiporus longicollis Oliver) as revealed by analysis of the COI-tRNA Leu COII region. Genet 143:85–92.  https://doi.org/10.1007/s10709-015-9817-6 CrossRefGoogle Scholar
  41. Silva MTB (1996) Controle de larvas de Diloboderus abderus (Sturm) (Coleoptera: Melolonthidae) através do tratamento de sementes de milho com inseticidas em plantio direto. Anais Soc Entomol Brasil 25:281–286Google Scholar
  42. Silva MD, Klein VA, Link D, Reinert DJ (1994) Influência de sistemas de manejo de solos na oviposição de Diloboderus abderus Sturm (Coleoptera: Melolonthidae). Anais Soc Entomol Brasil 23:543–548Google Scholar
  43. Silva MTB, Boss A (2002) Controle de larvas de Diloboderus abderus com inseticidas em trigo. Cienc Rural 32:191–195.  https://doi.org/10.1590/S0103-84782002000200002 CrossRefGoogle Scholar
  44. Silva MTB, Costa EC (2002) Nível de controle de Diloboderus abderus em aveia preta, linho, milho e girassol. Cienc Rural 32:7–12.  https://doi.org/10.1590/S0103-84782002000100002 CrossRefGoogle Scholar
  45. Silva MT, Klein VA, Reinert DJ (1995) Controle de larvas de Diloboderus abderus Sturm (Coleoptera: Melolonthidae) por sistemas de manejo de solos em trigo. Anais Soc Entomol Brasil 24:227–232Google Scholar
  46. Silva MTB, Loeck AE (1996) Ciclo evolutivo e comportamento de Diloboderus abderus Sturm (Coleoptera: Melolonthidae) em condições de plantio direto. Anais Soc Entomol Brasil 25:329–337Google Scholar
  47. Silva MTB, Salvadori JR (2004) Coró-das-pastagens. In Salvadori, JR, Ávila CJ, Silva MTB (eds) Pragas de solo no Brasil. Embrapa Trigo, Passo Fundo; Embrapa Agropecuária Oeste, Dourados; Fundacep Fecotrigo, Cruz Alta, pp 191–210, DOI:  https://doi.org/10.1016/j.talanta.2004.02.003
  48. Staden R, Beal KF, Bonfield JK (2000) The staden package. Bioinf Meth Prot 132:115–130CrossRefGoogle Scholar
  49. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595Google Scholar
  50. Tiroesele B, Skoda SR, Hunt TE, Lee DJ, Molina-Ochoa J, Foster JE (2014) Population structure, genetic variability, and gene flow of the bean leaf beetle, Cerotoma trifurcata, in the Midwestern United States. J Insect Sci 14:62.  https://doi.org/10.1093/jis/14.1.62 CrossRefGoogle Scholar
  51. Valmorbida I, Cherman MA, Jahn DS, Guedes JVC (2018) Abundance and diversity in the Melolonthidae community in cultivated and natural grassland areas of the Brazilian Pampa. Environ Entomol.  https://doi.org/10.1093/ee/nvy109
  52. Wright S (1943) Isolation by distance. Genetics 28:114–138Google Scholar

Copyright information

© Sociedade Entomológica do Brasil 2018

Authors and Affiliations

  1. 1.Dept of Crop ProtectionFederal Univ of Santa MariaSanta MariaBrasil
  2. 2.Dept of ZoologyFederal Univ of ParanáCuritibaBrasil

Personalised recommendations