Neotropical Entomology

, Volume 48, Issue 1, pp 71–77 | Cite as

Temperature Thresholds and Thermal Requirements for Development and Survival of Dysmicoccus brevipes (Hemiptera: Pseudococcidae) on Table Grapes

  • A BertinEmail author
  • S Lerin
  • M Botton
  • J R P Parra
Ecology, Behavior and Bionomics


Temperature is an important climate factor that has a direct influence on insect biology and consequently a crucial role in forecasting and integrated pest management. The mealybug Dysmicoccus brevipes (Cockerell) (Hemiptera: Pseudococcidae) is one of the most common species in Brazilian vineyards. Here, development and survival of D. brevipes on leaves of table grapes (Vitis vinifera cv. Itália) were studied at five constant temperatures (15, 20, 25, 28, and 30 ± 1°C) under laboratory conditions. We investigated the developmental time and nymphal survival, temperature thresholds, and the degree-day requirements for each life stage of D. brevipes. The developmental time for the nymphal stage ranged from 32 to 130 days with decreasing the temperature, with the temperatures of 28 and 30°C providing the shorter developmental time. Survival of the entire nymphal stage was affected by the temperature, ranging from 81% at 20°C to 1% at 15°C. The predicted upper lethal temperature was 34.5°C, while the optimal temperature was 28.6°C. The minimum threshold for total development of D. brevipes occurred at 8.2°C. Dysmicoccus brevipes required 678.4 degree-days to complete development from first-instar nymph to adult. The temperature of 30°C was the most suitable for the development of D. brevipes. The thermal thresholds estimated for D. brevipes life cycle suggest that this species can develop in different table grape-producing regions of Brazil, in a temperature range between 8 and 35°C.


Pineapple mealybug Vitis vinifera thermal constant lower developmental threshold optimal temperature 



We thank Dr. Janet W. Reid (JWR Associates) for English and technical corrections, Prof. Dr. Wesley Augusto Conde Godoy for assistance with the non-linear model, and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Process No. 130892/2010-6) for granting a scholarship to the first author.


  1. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  2. Ben-Dov Y (1994) A systematic catalogue of the mealybugs of the world (Insecta: Homoptera: Coccoidea: Pseudococcidae and Putoidae) with data on geographical distribution, host plants, biology and economic importance. Intercept, Andover, p 686Google Scholar
  3. Bergant K, Trdan S (2006) How reliable are thermal constants for insect development when estimated from laboratory experiment? Entomol Exp Appl 120:251–256CrossRefGoogle Scholar
  4. Bertin A, Bortoli LC, Botton M, Parra JRP (2013) Host plant effects on the development, survival, and reproduction of Dysmicoccus brevipes (Hemiptera: Pseudococcidae) on grapevines. Ann Entomol Soc Am 106:604–609CrossRefGoogle Scholar
  5. Cid M, Pereiro S, Cabaleiro C, Segura A (2010) Citrus mealybug (Hemiptera: Pseudococcidae) movement and population dynamics in an arbor-trained vineyard. J Econ Entomol 103:619–630CrossRefGoogle Scholar
  6. Colen KGF, Santa-Cecília LVC, Moraes JC, Reis PB (2000) Efeitos de diferentes temperaturas sobre a biologia da cochonilha pulverulenta Dysmicoccus brevipes (Cockerell, 1893) (Hemiptera: Pseudococcidae). Rev Bras Frutic 22:248–252Google Scholar
  7. Daane KM, Cooper ML, Triapitsyn SV, Walton VM, Yokota GY, Haviland DR, Bentley WJ, Godfrey KE, Wunderlich LR (2008) Vineyard managers and researchers seek sustainable solutions for mealybugs, a changing pest complex. Calif Agric 62:167–176CrossRefGoogle Scholar
  8. Daane KM, Almeida RPP, Bell VA, Walker JTS, Botton M, Fallahzadeh M, Mani M, Miano JL, Sforza R, Walton VM, Zaviezo T (2012) Biology and management of mealybugs in vineyards. In: Bostanian NJ, Vincent C, Isaacs R (eds) Arthropod management in vineyards: pests, approaches, and future directions. Springer, Dordrecht, pp 271–307CrossRefGoogle Scholar
  9. Flaherty DL, Philips PA, Legner EF, Peacock WL, Bentley WJ (1992) Mealybugs. In: Flaherty DL, Christensen LP, Lanini WT, Marois JJ, Phillips PA, Wilson LT (eds) Grape pest management. University of California, Oakland, pp 159–165Google Scholar
  10. Geiger CA, Daane KM (2001) Seasonal movement and distribution of the grape mealybug (Homoptera: Pseudococcidae): developing a sampling program for San Joaquin Valley vineyards. J Econ Entomol 94:291–301CrossRefGoogle Scholar
  11. González RH, Volosky C (2004) Chanchitos blancos y polillas de la fruta: problema cuarentenarios de la fruta de exportación. Rev Frutic 25:41–62Google Scholar
  12. Groth MZ, Loeck AE, Nornberg SD, Bernardi D, Nava DE (2017) Biology and thermal requirements of Fopius arisanus (Sonan, 1932) (Hymenoptera: Braconidae) reared on Ceratitis capitata eggs (Wiedemann) (Diptera: Tephritidae). Neotrop Entomol 46:554–560CrossRefGoogle Scholar
  13. Haddad ML, Parra JRP (1984) Métodos para estimar as exigências térmicas e os limites de desenvolvimento dos insetos. FEALQ, Piracicaba, p 45Google Scholar
  14. Honek A (1996) Geographical variation in thermal requirements for insect development. Eur J Entomol 93:303–312Google Scholar
  15. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363CrossRefGoogle Scholar
  16. Ju RT, Zhu HY, Gao L, Zhou XH, Li B (2015) Increases in both temperature means and extremes likely facilitate invasive herbivore outbreaks. Sci Rep 5:15715. CrossRefGoogle Scholar
  17. Logan JA, Wollkind SC, Hoyt SC, Tanigoshi LK (1976) An analytical model for description of temperature dependent rate phenomenon in arthropods. Environ Entomol 5:1133–1140CrossRefGoogle Scholar
  18. McKenzie HL (1967) Mealybugs of California with taxonomy, biology, and control of North American species (Homoptera: Coccoidea: Pseudococcidae). University of California Press, Berkeley, p 526Google Scholar
  19. Morandi Filho WJ, Pacheco da Silva VC, Granara de Willink MC, Prado E, Botton M (2015) A survey of mealybugs infesting South-Brazilian wine vineyards. Rev Bras Entomol 59:251–254CrossRefGoogle Scholar
  20. Pacheco da Silva VC, Bertin A, Blin A, Germain J-F, Bernardi D, Rignol G, Botton M, Malausa T (2014) Molecular and morphological identification of mealybug species (Hemiptera: Pseudococcidae) in Brazilian vineyards. PLoS One 9(7):e103267. CrossRefGoogle Scholar
  21. Pacheco da Silva VC, Kaydan MB, Malausa T, Germain JF, Palero F, Botton M (2017) Integrative taxonomy methods reveal high mealybug (Hemiptera: Pseudococcidae) diversity in southern Brazilian fruit crops. Sci Rep 7(1):15741. CrossRefGoogle Scholar
  22. Protas JFS (2016) A dinâmica evolutiva da vitivinicultura brasileira, cenários 2004–2014. Rev Política Agrícola 1:47–54Google Scholar
  23. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  24. Robinet C, Roques A (2010) Direct impacts of recent climate warming on insect populations. Integr Zool 5:132–142. CrossRefGoogle Scholar
  25. Roy M, Brodeur J, Cloutier C (2002) Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdaniali (Acarina: Tetranychidae). Environ Entomol 31:177–187CrossRefGoogle Scholar
  26. Santa-Cecília LVC, Souza B, Souza JC, Prado E, Moino Junior A, Fornazier MJ, Carvalho GA (2007) Cochonilhas-farinhentas em cafeeiros: bioecologia, danos e métodos de controle. EPAMIG, Belo Horizonte, p 48Google Scholar
  27. Trudgill DL, Honek A, Li D, van Straalen NM (2005) Thermal time – concepts and utility. Ann Appl Biol 146:1–14CrossRefGoogle Scholar
  28. Varikou K, Birouraki A, Bagis N, Kontodimas DC (2010) Effect of temperature on the development and longevity of Planococcus ficus (Hemiptera: Pseudococcidae). Ann Entomol Soc Am 103:943–948CrossRefGoogle Scholar
  29. Williams DJ, Granara De Willink MC (1992) Mealybugs of Central and South America. CAB International, London, p 635Google Scholar

Copyright information

© Sociedade Entomológica do Brasil 2018

Authors and Affiliations

  1. 1.Depto de Entomologia e AcarologiaUniv de São PauloPiracicabaBrasil
  2. 2.Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande Do SulBento GonçalvesBrasil
  3. 3.Embrapa Uva e VinhoBento GonçalvesBrasil

Personalised recommendations