Neotropical Entomology

, Volume 48, Issue 1, pp 136–142 | Cite as

Body Length Determines the Diet and Niche Specialization of Non-Biting Midge Predator (Tanypodinae) Larvae in Shallow Reservoirs

  • H H L SaulinoEmail author
  • S Trivinho-Strixino
Ecology, Behavior and Bionomics


The functional traits of species respond to environmental gradient changes, which, in turn, are responsible for the niche specialization of species. We analyzed the niche specialization of several Tanypodinae taxa (predatory non-biting midge, 4th instar, n = 693) along the depth zones of the water in six shallow tropical reservoirs. We measured the body length and diet composition of seven Tanypodinae larvae genus. Community-weighted mean (CWM) traits index was utilized to calculate the niche distribution of body length and diet composition. We analyzed the niche distribution of predator larvae, through a simple linear analysis of CWM index and the depth of the water, and by establishing correlations between body length and diet composition. In our study, it was found that the consumption of oligochaete (b = 0.30, SE ± 0.04, t = 7.02, p = 0.0001, R2 = 0.45) and the body length (b = 0.64, SE ± 0.11, t = 5.44, p = 0.0001, R2 = 0.33) increased in deeper zones. We observed a strong and positive relationship between oligochaete consumption and a longer body (r = 0.91, p = 0.0001). We inferred that changes in habitat characteristics, from littoral to deeper zones of the reservoirs, are expected to have influenced the selection of larvae traits predators. We concluded that body length determines the diet consumption and accurately reflects the niche distribution of Tanypodinae assemblages. The functional trait approach proved to be an efficient tool for the analysis of the ecological processes that determine the structure of a non-biting midge predator assemblage.


Predator-prey lentic system CWM index functional trait Coelotanypus 



We would like to thank Dr. Ângela Terumi Fushita for preparing the map of the study area, and Rebecca Clement, who provided the first English language reviews. We would especially like to thank Dr. Gilmar Perbiche-Neves, as well as all the anonymous referees who contributed with suggestions and comments to improve the paper.

Funding Information

We would like to thank the National Council for Technological and Scientific Development (CNPq) for the financial support.


  1. Baker AS, McLachlan AJ (1979) Food preferences of tanypodinae larvae (Diptera: Chironomidae). Hydrobiologia 62:283–288CrossRefGoogle Scholar
  2. Berg MB (1995) Larval food and feeding behaviour. In: The Chironomidae. Springer, Netherlands, pp 168–136Google Scholar
  3. Bernot RJ, Turner AM (2001) Predator identity and trait-mediated indirect effects in a littoral food web. Oecologia 129:139–146CrossRefGoogle Scholar
  4. Bogan MT, Boersma KS, Lytle DA (2013) Flow intermittency alters longitudinal patterns of invertebrate diversity and assemblage composition in an arid-land stream network. Freshw Biol 58:1016–1028CrossRefGoogle Scholar
  5. Cheruvelil KS, Soranno PA, Serbin RD (2000) Macroinvertebrates associated with submerged macrophytes: sample size and power to detect effects. Hydrobiologia 441:133–139CrossRefGoogle Scholar
  6. Coffman WP, Ferrington Jr LC (1996) Chironomidae. In Merrit C, Cummins K (1996). An introduction to the aquatic insects of North America. Kendall Hunt, pp 635–754Google Scholar
  7. Cohen JE, Pimm SL, Yodzis P, Saldaña J (1993) Body sizes of animal predators and animal prey in food webs. J Animal Ecol 62:67–78CrossRefGoogle Scholar
  8. Cranston PS (1995) Systematics. In Armitage PD, Pinder LC, Cranston P (Eds.) (1995) The Chironomidae: biology and ecology of non-biting midges. Springer Science & Business Media.The Chironomidae. Springer, NetherlandsGoogle Scholar
  9. Cronin G, Lewis WM Jr, Schiehser MA (2006) Influence of freshwater macrophyte on the littoral ecosystem structure and function of a young Colorado reservoir. Aquat Bot 85:37–43CrossRefGoogle Scholar
  10. De Oliveira CS, Da Silva MA, Gessner AA (2012) Neotropical Ablabesmyia Johannsen (Diptera: Chironomidae, Tanypodinae)—part I. Zootaxa 37:1–123Google Scholar
  11. De Oliveira CSN, Da Silva FL, Trivinho-Strixino S (2014) Four new species of Clinotanypus Kieffer, 1913 (Diptera: Chironomidae: Tanypodinae) from Neotropical region. J Nat Hist 48:317–343CrossRefGoogle Scholar
  12. De Roos AM, Persson L (2002) Size-dependent life-history traits promote catastrophic collapses of top predators. Proc Natl Aca Sci 99:12907–12912CrossRefGoogle Scholar
  13. Dornfeld CB, Fonseca-Gessner AA (2005) Fauna de Chironomidae (Diptera) associada à Salvinia sp. e Myriophyllum sp. num reservatório do córrego do espraiado, São Carlos, São Paulo, Brasil. Entomol Vectors 12:181–192CrossRefGoogle Scholar
  14. Frainer A, Jabiol J, Gessner MO, Bruder A, Chauvet E, McKie BG (2015) Stoichiometric imbalances between detritus and detritivores are related to shifts in ecosystem functioning. Oikos 125:861–871CrossRefGoogle Scholar
  15. Galizzi MC, Zilli F, Marchese M (2012) Diet and functional feeding groups of Chironomidae (Diptera) in the middle Paraná River floodplain (Argentina). Iheringia Sér Zool 102:117–121CrossRefGoogle Scholar
  16. Gotelli NJ, Ellison AM (2011) Princípios de estatística em ecologia. ARTMED, Porto Alegre, p 527Google Scholar
  17. Henriques-Oliveira AL, Nessimian JL, Dorvillé LFM (2003) Feeding habits of Chironomid larvae (Insecta Diptera) from a stream in the Floresta da Tijuca, Rio de Janeiro, Brazil. Brazil J Biol 63:269–281CrossRefGoogle Scholar
  18. Hildrew AG, Towsend CR, Hashman A (1985) The predatory Chironomidae of an iron-rich stream: feeding ecology and food web structure. Ecol Entomol 10:403–413CrossRefGoogle Scholar
  19. Hoverman JT, Auld JR, Relyea RA (2005) Putting prey back together again: integrating predator-induced behaviour, morphology, and life history. Oecologia 144:481–491CrossRefGoogle Scholar
  20. Jeffries MJ, Lawton JH (1985) Predator-prey ratios in communities of freshwater invertebrates: the role of enemy-free space. Freshw Biol 15:105–112CrossRefGoogle Scholar
  21. Klecka J, Boukal DS (2012) Who eats whom in a pool? A comparative study of prey selectivity by predatory aquatic insects. PLoS One 7:37741CrossRefGoogle Scholar
  22. Kobayashi T (1998) Seasonal changes in body size and male genital structures of Procladius choreus (Diptera: Chironomidae: Tanypodinae). Aquat Insects 20:165–172CrossRefGoogle Scholar
  23. Kovalenko KE, Dibble ED, Slade JG (2010) Community effects of invasive macrophyte control: the role of invasive plant abundance and habitat complexity. J Appl Ecol 47:318–328CrossRefGoogle Scholar
  24. Laliberté E, Legendre P, Shipley B (2015) FD: measuring functional diversity from multiple traits, and other tools for Funct Ecol R package version 1.0–12Google Scholar
  25. Langdon PG, Ruiz Z, Wynne S, Sayer CD, Davidson TA (2010) Ecological influences on larval chironomid communities in shallow lakes: implications for palaeolimnological interpretations. Freshw Biol 55:531–545CrossRefGoogle Scholar
  26. Leite-Rossi LA, Saulino HHL, Shimabukuro EM, Cunha-Santino M, Trivinho-Strixino S (2018) Shredder chironomid diets are influenced by decomposition rates of different leaf litter species. Neotrop Entomol.
  27. Mason NW, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118CrossRefGoogle Scholar
  28. McAbendroth L, Ramsay PM, Foggo A, Rundle SD, Bilton DT (2005) Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos 111:279–290CrossRefGoogle Scholar
  29. Mouchet MA, Villeger S, Mason NW, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876CrossRefGoogle Scholar
  30. Peiró DF, Amaral GA, Saulino HHL (2015) Structure community of aquatic insects associated with different macrophytes in ornamental lakes in a savanna region, southeastern Brazil. Panam J Aquat Sci 10:273–282Google Scholar
  31. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758CrossRefGoogle Scholar
  32. Pinder LCV (1986) Biology of freshwater Chironomidae. Annu Rev Entomol 31:1–23CrossRefGoogle Scholar
  33. Rae JG (2004) The colonization response of lotic chironomid larvae to substrate size and heterogeneity. Hydrobiologia 524:115–124CrossRefGoogle Scholar
  34. Reuss NS, Hamerlík L, Velle G, Michelsen A, Pedersen O, Brodersen KP (2014) Microhabitat influence on chironomid community structure and stable isotope signatures in West Greenland lakes. Hydrobiologia 730:59–77CrossRefGoogle Scholar
  35. Ricotta C, Moretti M (2011) CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167:181–188CrossRefGoogle Scholar
  36. Roback SS (1969) Notes on the food of Tanypodinae larvae. Entomol News 80:13–18Google Scholar
  37. Saulino HHL, Trivinho-Strixino S (2017) Forecasting the impact of an invasive macrophyte species in the littoral zone throughout aquatic insect species composition. Iheringia 107:e2017043Google Scholar
  38. Scharf FS, Juanes F, Rountree RA (2000) Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Mar Ecol Progr Ser 208:229–248CrossRefGoogle Scholar
  39. Schmid-Araya JM, Schmid PE (2000) Trophic relationships: integrating meiofauna into a realistic benthic food web. Freshw Biol 44:149–163CrossRefGoogle Scholar
  40. Sephton TW (1987) Some observations on the food of larvae of Procladius bellus (Diptera: Chironomidae). Aquat Insects 9:195–202CrossRefGoogle Scholar
  41. Serra SR, Cobo F, Graça MA, Dolédec S, Feio MJ (2016) Synthesising the trait information of European Chironomidae (Insecta: Diptera): towards a new database. Ecol In 61:282–292Google Scholar
  42. Sih A, Bolnick DI, Luttbeg B, Orrock JL, Peacor SD, Pintor LM, Preisser EP, Rehage JS, Vonesh JR (2010) Predator-prey navïtè, antipredator behavior, and the ecology of predator invasions. Oikos 119:610–621CrossRefGoogle Scholar
  43. Silva FL, Fonseca-Gessner AA, Ekrem T (2014) A taxonomic revision of genus Labrundinia Fittkau, 1962 (Diptera: Chironomidae: Tanypodinae). Zootaxa 3769:1–185CrossRefGoogle Scholar
  44. Smith LC, Smock LA (1992) Ecology of invertebrate predators in a coastal plain stream. Freshw Biol 28:319–329CrossRefGoogle Scholar
  45. Southwood TRE (1977) Habitat, the templet for ecological strategies? J Animal Ecol 46:337–365CrossRefGoogle Scholar
  46. Tokeshi M (1995) Species interactions and community structure. In: Armitage PD, Cranston PS, Pinder LCV the Chironomidae. Springer, Netherlands, pp 297–335Google Scholar
  47. Tóth M, Móra A, Kiss B, Dévai G, Specziár A (2012) Are macrophyte-dwelling Chironomidae (Diptera) largely opportunistic in selecting plant species? Eur J Entomol 109:247–260CrossRefGoogle Scholar
  48. Trivinho-Strixino S, Correia LCS, Sonoda K (2000) Phytophilous Chironomidae (Diptera) and other macroinvertebrates in the ox-bow Infernão Lake (Jataí Ecological Station, Luiz Antônio, SP, Brazil). Rev Bras Biol 60:527–535CrossRefGoogle Scholar
  49. Trivinho-Strixino S (2014) Ordem Diptera, Família Chironomidae guia de identificação de larvas. In Hamada N, Nessimian JL, Querino RB (eds) Insetos aquáticos na Amazônia brasileira. INPA, Manaus, pp. 457–660Google Scholar
  50. Vandewalle M, De Bello F, Berg MP, Bolger T, Dolédec S, Dubs F, Feld CK, Harrington R, Harrison PA, Lavorel S, Da Silva PM, Moretti M, Niemelä J, Santos P, Sattler T, Sousa JP, Sykes MT, Vanbergen AJ, Woodcock BA (2010) Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers Conserv 19:2921–2947CrossRefGoogle Scholar
  51. Veloso HP, Rangel Filho ALR, Lima A (1997) Classificação da vegetação brasileira, adaptada a um sistema universal. Fundação Instituto Brasileiro de Geografia e Estatística IBGE, Rio de JaneiroGoogle Scholar
  52. Verberk WC, Siepel H, Esselink H (2008) Life-history strategies in freshwater macroinvertebrates. Freshw Biol 53:1722–1738CrossRefGoogle Scholar
  53. Vermaire JC, Greffard MH, Saulnier-Talbot É, Gregory-Eaves I (2013) Changes in submerged macrophyte abundance altered diatom and chironomid assemblages in a shallow lake. J Paleolimnol 50:447–456CrossRefGoogle Scholar
  54. Walker PD, Wijnhoven S, van der Velde G (2013) Macrophyte presence and growth form influence macroinvertebrate community structure. Aquat Bot 104:80–87CrossRefGoogle Scholar
  55. Wallace JB, Webster JR (1996) The role of macroinvertebrates in stream ecosystem function. Annu Revi Entomol 41:115–139CrossRefGoogle Scholar
  56. Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A, Warren PH (2005) Body size in ecological networks. Trends Ecol Evol 20:402–409CrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2018

Authors and Affiliations

  1. 1.Programa de Pós Graduação em Ecologia e Recursos Naturais – PPGERNUniv Federal de São Carlos – UFSCarSão CarlosBrasil
  2. 2.Lab de Ecologia de Insetos Aquáticos, Depto de HidrobiologiaUniv Federal de São Carlos – UFSCarSão CarlosBrasil

Personalised recommendations