Advertisement

Neotropical Entomology

, Volume 48, Issue 1, pp 50–56 | Cite as

Optimized Pitfall Trap Design for Collecting Terrestrial Insects (Arthropoda: Insecta) in Biodiversity Studies

  • V Costa-SilvaEmail author
  • M D Grella
  • P J Thyssen
Ecology, Behavior and Bionomics
  • 226 Downloads

Abstract

Pitfall traps are commonly used for the collection of terrestrial insects in ecology and biology studies; they are relatively straightforward to manufacture and there is a large variety of models described in the literature. However, they present a few drawbacks: (i) the removal and transport of the collected material are not practical; (ii) they have low resistance and durability; (iii) they fail to correctly protect the attractive bait against adverse weather conditions and scavengers, and (iv) evaporation of the liquid used inside the trap. We proposed an optimized pitfall trap design for terrestrial insect collection made from cheap and easily accessible materials. The new design allows the transfer of the collected material to the lab by removing only that part of the trap where the insects have been captured; the other part remains in its original place. Thus, the proposed trap allows easier operation since there is no need to transport water to replenish the traps after each transfer; in addition, there is less volume and weight to be carried. The trap can remain in the field for months because of the durability of its material. Furthermore, the collected material is better protected against adverse weather conditions and scavengers. Currently, an efficient and rapid sampling strategy in the field is of global interest to understand mechanisms that can contribute to the monitor changes in phenology, succession, and biodiversity.

Keywords

Sampling method survey entomology saprophagous diversity taxonomic impediment 

Notes

Acknowledgments

We are grateful to Marina F. K. Aquino, MsC (UNICAMP), for the schematic representations of the NTPs; to post-graduate students Cauê T. Mira and Natane C. S. Purgato (UNICAMP) for their effort in the assembly of the traps and field collections; to Dr. Pedro Giovâni da Silva (UFSC) for suggesting the collection design and help with the ecological indexes; to Dr. Décio A. Fonini Jr. for the critical revision of the manuscript; and last but not least to CAPES for scholarship to VCS and MDG. The authors are grateful to anonymous reviewers for all suggestions and corrections of this manuscript.

Compliance with Ethical Standards

All collections were authorized by the Brazilian Ministry of the Environment (MMA), through the Biodiversity Authorization and Information System (SISBIO), process number 55145-1.

References

  1. Adis J (1979) Problems of interpreting arthropod sampling with pitfall traps. Zool Anz 202:177–184Google Scholar
  2. Almeida LM, Mise KM (2009) Diagnosis and key of the main families and species of South American Coleoptera of forensic importance. Rev Bras Entomol 53:227–244CrossRefGoogle Scholar
  3. Ansaloni LS, Purgato NCS, Costa-Silva V, Thyssen PJ (2017) Avaliação da atratividade de dípteros (Arthropoda, Insecta) a iscas em diferentes estratégias para coleta em um fragmento de Mata Atlântica de São Paulo. Anais do XIII CAEB, UNICAMP. CampinasGoogle Scholar
  4. Arbogast RT, Kendra PE, Weaver DK, Subramanyam B (2000) Phenology and spatial pattern of Typhaea stercorea (Coleoptera: Mycetophagidae) infesting stored grain: estimation by pitfall trapping. J Econ Entomol 93:240–251CrossRefGoogle Scholar
  5. Barber HS (1931) Traps for cave-inhabiting insects. J Elisha Mitchell Sci Soc 46:259–266Google Scholar
  6. Bestelmeyer BT, Agosti D, Alonso LE, Brandão CRF, Brown WL Jr, Delabie JHC, Silvestre R (2000) Field techniques for the study of ground-dwelling ants. In: Majer JD, Alonso LE, Schultz TR, Agosti D (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Scholarly Press, Washington D.C., pp 122–144Google Scholar
  7. Bohac J (1999) Staphylinid beetles as bioindicators. Agric Ecosyst Environ 74:357–372CrossRefGoogle Scholar
  8. Bonacci T, Vercillo V, Benecke M (2017) Dermestes frischii and D. undulatus (Coleoptera: Dermestidae) on a human corpse in Southern Italy: first report. Rom J Leg Med 25:180–184CrossRefGoogle Scholar
  9. Bouchard P, Bousquet Y, Davies AE, Alonso-Zarazaga MA, Lawrence JF, Lyal CHC, Newton AF, Reid CAM, Schmitt M, Slipinski SA, Smith ABT (2011) Family-group names in Coleoptera (Insecta). ZooKeys 88:1–972CrossRefGoogle Scholar
  10. Brown GR, Matthews IM (2016) A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground active arthropod biodiversity. Ecol Evol 6:3953–3964CrossRefGoogle Scholar
  11. Dahl F (1896) Vergleichende Untersuchungen über die Lebensweise wirbelloser Aasfresser. Sitzungberichte. Königl Preuss Akad Wiss Berlin 1:17–30Google Scholar
  12. Danchin E, Giraldeau LA, Cézilly F (2008) Behavioural ecology: an evolutionary perspective on behaviour. Oxford University Press, OxfordGoogle Scholar
  13. Duffey E (1972) Ecological survey and the arachnologist. Bull Br Arachnol Soc 2:69–82Google Scholar
  14. Favila ME, Halffter G (1997) The use or indicator groups for measuring biodiversity as related to community structure and function. Acta Zool Mex 72:1–25Google Scholar
  15. Ferguson AW, Forstner MRJ (2006) A device for excluding predators from pitfall traps. Herpetol Rev 37:316–317Google Scholar
  16. Fichter E (1941) Apparatus for the comparison of soil surface arthropod populations. Ecology 22:338–339CrossRefGoogle Scholar
  17. Hancock MH, Legg CJ (2012) Pitfall trapping bias and arthropod body mass. Insect Conserv Diver 5:312–318CrossRefGoogle Scholar
  18. Hertz M (1927) Huomioita petokuoriaisten olinpaikoista. Lunnon Ystävä 31:218–222Google Scholar
  19. Holland JM, Reynolds CJM (2005) The influence of emptying frequency of pitfall traps on the capture of epigeal invertebrates, especially Pterostichus madidus (Coleoptera: Carabidae). Br J Ent Nat Hist 18:259–263Google Scholar
  20. Koivula M, Kotze DJ, Hiisivuori L, Rita H (2003) Pitfall trap efficiency: do trap size, collecting fluid and vegetation structure matter? Entomol Fenn 14:1–14Google Scholar
  21. Kulshrestha P, Satpathy DK (2001) Use of beetles in forensic entomology. Forensic Sci Int 120:15–17CrossRefGoogle Scholar
  22. Larsen TH, Forsyth A (2005) Trap spacing and transect design for dung beetle biodiversity studies. Biotropica 37:322–325CrossRefGoogle Scholar
  23. Luederwald H (1911) Os insetos necrófagos paulistas. Rev Mus Paulista 8:414–433Google Scholar
  24. Marinoni RC, Ganho NG, Monné ML, Mermudes JRM (2001) Hábitos alimentares em Coleoptera (Insecta). Holos, Ribeirão PretoGoogle Scholar
  25. Mayer AC, Vasconcelos SD (2013) Necrophagous beetles associated with carcasses in a semi-arid environment in Northeastern Brazil: implications for forensic entomology. Forensic Sci Int 226:41–45CrossRefGoogle Scholar
  26. Medeiros FA, Wiebeck H (2013) PVC Orientado: avaliação de processo de orientação e das propriedades mecânicas em função da razão de estiramento. Polímeros 23:636–643CrossRefGoogle Scholar
  27. Monteiro-Filho EA, Penereiro J (1987) Estudo da decomposição e sucessão sobre uma carcaça animal numa área do estado de São Paulo, Brasil. Rev Bras Biol 47:289–295Google Scholar
  28. New TR (2010) Beetles in conservation. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  29. Niero MM, Hernandez MIM (2017) Influência da paisagem nas assembleias de Scarabaeinae (Coleoptera: Scarabaeidae) em um ambiente agrícola no sul de Santa Catarina. Biotemas 30:37–48CrossRefGoogle Scholar
  30. Oliveira CM, Mendonça JSF (2011) Técnicas de coleta de Scarabaeoidea (Insecta: Coleoptera): dispositivo anti-pilhagem de iscas em armadilhas de queda. Comunicado Técnico 173. http://bbeletronica.cpac.embrapa.br/2011/comtec/comtec_173.pdf. Accessed 19 Feb 2018
  31. Pachekoski WM, Agnelli JAM, Belem LP (2009) Thermal, mechanical and morphological properties of poly (hydroxybutyrate) and polypropylene blends after processing. Mater Res 12:159–164CrossRefGoogle Scholar
  32. Pendola A, New TR (2007) Depth of pitfall traps—does it affect interpretation of ant (Hymenoptera: Formicidae) assemblages? J Insect Conserv 11:199–201CrossRefGoogle Scholar
  33. Phillips ID, Cobb TP (2005) Effects of habitat structure and lid transparency on pitfall catches. Environ Entomol 34:875–882CrossRefGoogle Scholar
  34. Porter SD (2005) A simple design for a rain-resistant pitfall trap. Insect Soc 52:201–203CrossRefGoogle Scholar
  35. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/ Google Scholar
  36. Radawiec B, Aleksandrowicz O (2013) A modified pitfall trap for capturing ground beetles (Coleoptera: Carabidae). Coleopt Bull 67:473–480CrossRefGoogle Scholar
  37. Rafael JA, Melo GAR, Carvalho CJB, Casari AS, Constantino R (2012) Insetos do Brasil: diversidade e taxonomia. Ribeirão Preto, HolosGoogle Scholar
  38. Rodrigues WC (2007) DivEs: Diversidade de espécies Version 2.0Google Scholar
  39. Sabua TK, Shiju RT (2010) Efficacy of pitfall trapping, Winkler and Berlese extraction methods for measuring ground-dwelling arthropods in moist-deciduous forests in the Western Ghats. J Insect Sci 10:1–17CrossRefGoogle Scholar
  40. Shimabukuro EM, Pepinelli M, Perbiche-Neves G, Trivinho-Strixino S (2015) A new trap for collecting aquatic and semi-aquatic insects from madicolous habitats. Insect Conserv Diver 8:578–583CrossRefGoogle Scholar
  41. Skvarla MJ, Larson JL, Dowling AP (2014) Pitfalls and preservatives: a review. J Entomol Soc Ontario 145:15–43Google Scholar
  42. Southwood TR, Henderson PA (2000) Ecological methods, 3rd edn. Blackwell Science Ltd., University Press, CambridgeGoogle Scholar
  43. Westberg D (1977) Utbardering av fallfallenmetoden vid inventering av falt – och markskiktets lagre fauna. Statens Naturvardsverk, PM 844, VINA Rapp. 5. StockholmGoogle Scholar
  44. Work TT, Buddle CM, Korinus LM, Spence JR (2002) Pitfall trap size and capture of three taxa of litter-dwelling arthropods: implications for biodiversity studies. Environ Entomol 31:438–448CrossRefGoogle Scholar
  45. Zumr V, Starý P (1992) Field experiments with different attractants in baited pitfall traps for Hylobius abietis L. (Col., Curculionidae). J Appl Entomol 113:451–455CrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2018

Authors and Affiliations

  1. 1.Lab of Integrative Entomology, Dept of Animal Biology, IBUniv of Campinas (UNICAMP)CampinasBrasil

Personalised recommendations