Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Iridium nanoparticles deposited on hypercrosslinked polystyrene: synthesis and application in the hydrogenation of aromatic compounds

  • 15 Accesses

Abstract

A novel method for the incorporation of iridium nanoparticles into a hypercrosslinked polystyrene matrix is developed using supercritical CO2 as reaction medium. The composite has regularly distributed iridium nanoparticles with monomodal size of ca 5 nm. The catalyst shows high activity in the hydrogenation of benzene and can be recycled ten times without any decrease in productivity. The catalyst gave a full conversion in the hydrogenation of toluene to methylcyclohexane and fluoro- and chlorobenzene to cyclohexane.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    C. Amiensa, D. Ciuculescu-Pradines, K. Philippot, Coord. Chem. Rev. 308, 409–432 (2016)

  2. 2.

    S.J.T. Rezaei, A. Shamseddin, A. Ramazani, A.M. Malekzadeh, P.A. Asiabi, Appl. Organomet. Chem. 31, 1–10 (2017)

  3. 3.

    J. Dupont, J.D. Scholten, Chem. Soc. Rev. 39, 1780–1804 (2010)

  4. 4.

    N. Yan, C.X. Xiao, Y. Kou, Coord. Chem. Rev. 254, 1179–1218 (2010)

  5. 5.

    R. Mirsafaei, M.M. Heravi, T. Hosseinnejad, S. Ahmadi, Appl. Organomet. Chem. 30, 823–830 (2016)

  6. 6.

    G. Schmid, Chem. Rev. 92, 1709–1727 (1992)

  7. 7.

    O.A. Belyakova, Y.L. Slovokhotov, Russ. Chem. Bull. 52, 2299–2327 (2003)

  8. 8.

    M.A. Gelesky, A.P. Umpierre, G. Machado, R.R.B. Correia, W.C. Magno, J. Morais, G. Ebeling, J. Dupont, J. Am. Chem. Soc. 127, 4588–4589 (2005)

  9. 9.

    D. Astruc, F. Lu, J.R. Aranzaes, Angew. Chem. Int. Ed. 44, 7852–7872 (2005)

  10. 10.

    C. Pan, K. Pelzer, K. Philippot, B. Chaudret, F. Dassenoy, P. Lecante, M.J. Casanove, J. Am. Chem. Soc. 123, 7584–7593 (2001)

  11. 11.

    C.A. Stowell, B.A. Korgel, Nano Lett. 5, 1203–1207 (2005)

  12. 12.

    A. Roucoux, J. Schulz, H. Patin, Adv. Synth. Catal. 345, 222–229 (2003)

  13. 13.

    J.D. Aiken, Y. Lin, R.G. Finke, J. Mol. Catal. A: Chem. 114, 29–51 (1996)

  14. 14.

    J.A. Widegren, J.D. Aiken, S. Ozkar, R.G. Finke, Chem. Mater. 13, 312–324 (2001)

  15. 15.

    J.L. Pellegatta, C. Blandy, V. Colliere, R. Choukroun, B. Chaudret, P. Cheng, K. Philippot, J. Mol. Catal. A: Chem. 178, 55–61 (2002)

  16. 16.

    H.J. Ryu, L. Sanchez, H.A. Keul, A. Raj, M.R. Bockstaller, Angew. Chem. Int. Ed. 47, 7639–7643 (2008)

  17. 17.

    Y. Hu, Y.Y. Yu, Z.S. Hou, H. Li, X.G. Zhao, B. Feng, Adv. Synth. Catal. 350, 2077–2085 (2008)

  18. 18.

    R.M. Esteban, K. Schütte, P. Brandt, D. Marquardt, H. Meyer, F. Beckert, R. Mülhaupt, H. Kölling, C. Janiak, Nano-Struct. Nano-Objects 2, 11–18 (2015)

  19. 19.

    L. Tan, B. Tan, Chem. Soc. Rev. 46, 3322–3356 (2017)

  20. 20.

    E. Sulman, V. Matveeva, L. Bronstein, A. Sidorov, N. Lakina, S. Sidorov, P. Valetsky, Green Chem. 5, 205–208 (2003)

  21. 21.

    E. Sulman, V. Doluda, S. Dzwigaj, E. Marceau, L. Kustov, O. Tkachenko, A. Bykov, V. Matveeva, M. Sulman, N. Lakina, J. Mol. Catal. A: Chem. 278, 112–119 (2007)

  22. 22.

    E.M. Sulman, A.A. Ivanov, V.S. Chernyavsky, M.G. Sulman, A.I. Bykova, A.I. Sidorov, VYu. Doluda, V.G. Matveeva, L.M. Bronstein, B.D. Stein, A.S. Kharitonov, Chem. Eng. J. 176–177, 33–41 (2011)

  23. 23.

    S.E. Lyubimov, A.A. Vasil’ev, A.A. Korlyukov, M.M. Ilyin, S.A. Pisarev, V.V. Matveev, A.E. Chalykh, S.G. Zlotin, V.A. Davankov, React. Funct. Polym. 69, 755–758 (2009)

  24. 24.

    S.E. Lyubimov, E.A. Rastorguev, K.I. Lubentsova, A.A. Korlyukov, V.A. Davankov, Tetrahedron Lett. 54, 1116–1119 (2013)

  25. 25.

    J. Dupont, G.S. Fonseca, A.P. Umpierre, P.F.P. Fichtner, S.R. Teixeira, J. Am. Chem. Soc. 124, 4228–4229 (2002)

  26. 26.

    G.S. Fonseca, A.P. Umpierre, P.F.P. Fichtner, S.R. Teixeira, J. Dupont, Chem. Eur. J. 9, 3263–3269 (2003)

  27. 27.

    S. Kundu, H. Liang, J. Colloid Interface Sci. 354, 597–606 (2011)

  28. 28.

    Y. Lin, R.G. Finke, Inorg. Chem. 33, 4891–4910 (1994)

  29. 29.

    B.J. Hornstein, R.G. Finke, Chem. Mater. 15, 899–909 (2003)

  30. 30.

    A. Goel, N. Rani, Open J. Inorg. Chem. 2, 67–73 (2012)

  31. 31.

    L. Fu, X. Zeng, C. Huang, P. Cai, G. Cheng, W. Luo, Inorg. Chem. Front. 5, 1121–1125 (2018)

  32. 32.

    E.C. Butler, K.F. Hayes, Environ. Sci. Technol. 33, 2021–2027 (1999)

  33. 33.

    E.D. Goldberg, Sci. Total Environ. 100, 17–28 (1991)

Download references

Acknowledgements

This work was supported by Russian foundation for basic research, Grant No. 18-29-06032. Authors thank the Department of structural studies of Zelinsky Institute of organic chemistry (Moscow) for electron microscopy characterization.

Author information

Correspondence to Sergey E. Lyubimov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 744 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lyubimov, S.E., Sokolovskaya, M.V., Korlyukov, A.A. et al. Iridium nanoparticles deposited on hypercrosslinked polystyrene: synthesis and application in the hydrogenation of aromatic compounds. J IRAN CHEM SOC (2020). https://doi.org/10.1007/s13738-020-01854-w

Download citation

Keywords

  • Hypercrosslinked polystyrene
  • Iridium nanoparticles
  • Hydrogenation
  • Arenes