Advertisement

A theoretical quest to identify the precedence between NHC side group (R′) and bridge group (R) in the formation of [NHC(R′)(M(di-μ-R)YR)] (M = Li, Na, K; Y = Zn, Cd; R = H, CH3, t-Butyl, Si(CH3)3, C6H5; R′ = H, CH3, Dipp) complexes

  • Mitra Khodabandehloo
  • Mehdi BayatEmail author
  • Babak Golzadeh
Original Paper
  • 6 Downloads

Abstract

Latest developments in bimetallic chemistry confirm that the lethargic kinetic reactivity of organozinc reagents can be modified by pairing zinc reagents with group 1 organometallic compounds to form alkali-metal zincates. This study seeks to characterize the impact of NHC(R′) substituent and/or R bridge group on the formation mechanism of [NHC(R′)(M(di-μ-R)YR)] (M = Li, Na, K; Y = Zn, Cd; R = H, CH3, t-Butyl, Si(CH3)3, C6H5; R′ = H, CH3, Dipp) compounds. The nature of Ccarbene→M bond in the complexes has been analyzed with the help of density functional theory methods. In this regard, CAM-B3LYP functional is the most appropriate DFT method for the well-studied complexes among seven selected DFT methods. The effect of R′ substituent and the R bridge group on the formation mechanism of the titled compounds and the amount of activation barriers show interesting consequences regarding the size effect of R groups. In this view, a formation mechanism is suggested. Besides, the nature of Ccarbene→M bonds in all complexes is inspected through natural bond orbitals, atoms in molecules, energy decomposition analysis and extended transition state-natural orbitals for chemical valence analyses. Results confirmed that the contribution of electrostatic interaction in C→M bonds in present complexes is almost more than 70%.

Keywords

NHC complex NBO Nature of bond EDA-EDA-NOCV DFT 

Notes

Acknowledgments

The authors acknowledge Bu-Ali Sina University Research Councils for supporting this work.

Supplementary material

13738_2019_1806_MOESM1_ESM.docx (3.5 mb)
Supplementary material 1 (DOCX 3535 kb)

References

  1. 1.
    D. Zhang, G. Zi, Chem. Soc. Rev. 44, 1898 (2015)PubMedCrossRefGoogle Scholar
  2. 2.
    K. Öfele, J. Organomet. Chem. 12, P42 (1968)CrossRefGoogle Scholar
  3. 3.
    H.W. Wanzlick, H.J. Schönherr, Angew. Chem. Int. Ed. Engl. 7, 141 (1968)CrossRefGoogle Scholar
  4. 4.
    N.T. Patil, Angew. Chem. Int. Ed. 50, 1759 (2011)CrossRefGoogle Scholar
  5. 5.
    C.E. Willans, Organometallic Chemistry, vol. 36 (The Royal Society of Chemistry, London, 2010)CrossRefGoogle Scholar
  6. 6.
    D.J. Linton, P. Schooler, A.E.H. Wheatley, Coord. Chem. Rev. 223, 53 (2001)CrossRefGoogle Scholar
  7. 7.
    R.E. Mulvey, Organometallics 25, 1060 (2006)CrossRefGoogle Scholar
  8. 8.
    M. Westerhausen, Dalton Trans. 40, 4755 (2006)CrossRefGoogle Scholar
  9. 9.
    R.E. Mulvey, F. Mongin, M. Uchiyama, Y. Kondo, Angew. Chem. Int. Ed. 46, 3802 (2007)CrossRefGoogle Scholar
  10. 10.
    B. Haag, M. Mosrin, H. Ila, V. Malakhov, P. Knochel, Angew. Chem. Int. Ed. 50, 9794 (2011)CrossRefGoogle Scholar
  11. 11.
    R.E. Mulvey, Dalton Trans. 42, 6676 (2013)PubMedCrossRefGoogle Scholar
  12. 12.
    J. Clayden, Organolithiums: Selectivity for Synthesis, Pergamon (Elsevier Science Ltd., Oxford, 2002)Google Scholar
  13. 13.
    D.R. Armstrong, S.E. Baillie, V.L. Blair, N.G. Chabloz, J. Diez, J. Garcia-Alvarez, A.R. Kennedy, S.D. Robertson, E. Hevia, Chem. Sci. 4, 4259 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Kobayashi, Y. Matsumoto, M. Uchiyama, T. Ohwada, Macromolecules 37, 4339 (2004)CrossRefGoogle Scholar
  15. 15.
    T. Furuyama, M. Yonehara, S. Arimoto, M. Kobayashi, Y. Matsumoto, M. Uchiyama, Chem. Eur. J. 14, 10348 (2008)PubMedCrossRefGoogle Scholar
  16. 16.
    R.S. Ghadwal, H.W. Roesky, C. Schulzke, M. Granitzka, Organometallics 29, 6329 (2010)CrossRefGoogle Scholar
  17. 17.
    O. Back, B. Donnadieu, M. von Hopffgarten, S. Klein, R. Tonner, G. Frenking, G. Bertrand, Chem. Sci. 2, 858 (2011)CrossRefGoogle Scholar
  18. 18.
    R.S. Ghadwal, R. Azhakar, K. Pröpper, J.J. Holstein, B. Dittrich, H.W. Roesky, Inorg. Chem. 50, 8502 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    M. Bayat, N. Ahmadian, Polyhedron 96, 95 (2015)CrossRefGoogle Scholar
  20. 20.
    D.C. Georgiou, B.D. Stringer, C.F. Hogan, P.J. Barnard, D.J.D. Wilson, N. Holzmann, G. Frenking, J.L. Dutton, Chem. Eur. J. 21, 3377 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    M. Bayat, N. Ahmadian, J. Iran. Chem. Soc. 13, 397 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Bayat, S. Kamali, J. Mol. Liq. 222, 953 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Bayat, A. Sedghi, L. Ebrahimkhani, S.J. Sabounchei, Dalton Trans. 46, 207 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Bayat, E. Soltani, Polyhedron 123, 39 (2017)CrossRefGoogle Scholar
  25. 25.
    S. Kundu, P.P. Samuel, A. Luebben, D.M. Andrada, G. Frenking, B. Dittrich, H.W. Roesky, Dalton Trans. 46, 7947 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Z. Li, X. Chen, D.M. Andrada, G. Frenking, Z. Benkö, Y. Li, J.R. Harmer, C.-Y. Su, H. Grützmacher, Angew. Chem. Int. Ed. 56, 5744 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Bayat, S. Salehzadeh, G. Frenking, J. Organomet. Chem. 697, 74 (2012)CrossRefGoogle Scholar
  28. 28.
    M. Bayat, M. von Hopffgarten, S. Salehzadeh, G. Frenking, J. Organomet. Chem. 696, 2976 (2011)CrossRefGoogle Scholar
  29. 29.
    L. Zhao, S. Pan, N. Holzmann, P. Schwerdtfeger, G. Frenking, Chem. Rev. 119, 8781 (2019)PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393, 51 (2004)CrossRefGoogle Scholar
  31. 31.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, H.P.H.X. Li, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dappr, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, 09 (2009)Google Scholar
  32. 32.
    E.D. Glendering, A.E. Reed, J.E. Carpenter, F. Weinhold, Theoretical Chemistry Institute (University of Wisconsin, Madison, 1993)Google Scholar
  33. 33.
    F. Biegler-König, J. Schönbohm, R. Derdau, D. Bayles, R.F.W. Bader, AIM2000, Version 2.0 (McMaster University, Hamilton, 2002)Google Scholar
  34. 34.
    T. Yang, D.M. Andrada, G. Frenking, Mol. Phys. 117, 1306 (2019)CrossRefGoogle Scholar
  35. 35.
    T. Yang, D.M. Andrada, G. Frenking, Phys. Chem. Chem. Phys. 20, 11856 (2018)PubMedCrossRefGoogle Scholar
  36. 36.
    L. Zhao, M. Hermann, W.H.E. Schwarz, G. Frenking, Nat. Rev. Chem. 3, 48 (2019)CrossRefGoogle Scholar
  37. 37.
    M.P. Mitoraj, M. Parafiniuk, M. Srebro, M. Handzlik, A. Buczek, A. Michalak, J. Mol. Model. 17, 2337 (2011)PubMedCrossRefGoogle Scholar
  38. 38.
    M.P. Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theory Comput. 5, 962 (2009)PubMedCrossRefGoogle Scholar
  39. 39.
    M. Mitoraj, A. Michalak, J. Mol. Model. 13, 347 (2007)PubMedCrossRefGoogle Scholar
  40. 40.
    R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Clarendon Press, Oxford, 1994)Google Scholar
  41. 41.
    P. Popelier, P.L.A. Popelier, Atoms in Molecules: An Introduction (Prentice Hall, Upper Saddle River, 2000)CrossRefGoogle Scholar
  42. 42.
    K. Morokuma, J. Chem. Phys. 55, 1236 (1971)CrossRefGoogle Scholar
  43. 43.
    T. Ziegler, A. Rauk, Theor. Chim. Acta 46, 1 (1977)CrossRefGoogle Scholar
  44. 44.
    G. Frenking, K. Wichmann, N. Fröhlich, C. Loschen, M. Lein, J. Frunzke, V.C.M. Rayón, Coord. Chem. Rev. 238–239, 55 (2003)CrossRefGoogle Scholar
  45. 45.
    M. Lein, A. Szabo, A. Kovacs, G. Frenking, Faraday Discuss. 124, 365 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    M. Lein, G. Frenking, Theory and Applications of Computational Chemistry (Elsevier, Amsterdam, 2005)Google Scholar
  47. 47.
    M. Bayat, M. Hatami, Polyhedron 110, 46 (2016)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry, Faculty of ChemistryBu-Ali Sina UniversityHamedanIran
  2. 2.Department of ChemistryPayame Noor University (PNU)TehranIran

Personalised recommendations