Advertisement

Gabapentin-based synthesis of novel oxo- and spiro-dihydroquinazoline derivatives

  • Navid Khajehali
  • Ali DarehkordiEmail author
Original Paper
  • 4 Downloads

Abstract

New series of gabapentin-based oxo- and spiro-1,4-dihydroquinazolins were synthesized through condensation reaction of isatoic anhydride, gabapentin and aromatic aldehydes or mono/1,3-dicarbonyl compounds. This procedure is environmentally safe due to the presence of water as a solvent. Also gabapentin acts as a catalyst via its carboxylic acid functional group. We hope these compounds to be useful for biological activities.

Graphic abstract

Keywords

Isotonic anhydride Gabapentin 1,4-Dihydroquinazolins Spiro-1,4-dihydroquinazoline 

Notes

Acknowledgements

We gratefully acknowledge the Vail-e-Asr University of Rafsanjan Faculty Research Grant for financial support.

References

  1. 1.
    D.W. Chadwick, H. Anhut, M.J. Greiner, J. Alexander, G.H. Murray, E.A. Garofalo, M.W. Pierce, Neurology 51, 945 (1998)CrossRefGoogle Scholar
  2. 2.
    N.G. Boweng, Annu. Rev. Pharmacol. Toxicol. 33, 190 (1993)Google Scholar
  3. 3.
    J.M. Rosenberg, C. Harell, H. Ristic, R.A. Werner, A.M. Derosayro, Clin. J. Pain 13, 251 (1997)CrossRefGoogle Scholar
  4. 4.
    F. Placidi, D. Mattia, A. Romigi, M.A. Bassetti, F. Spanedda, M.G. Marciani, Clin. Neurophysiol. 111, 1637 (2000)CrossRefGoogle Scholar
  5. 5.
    L.M.L. Lima, Curr. Pharm. Des. 6, 873 (2000)CrossRefGoogle Scholar
  6. 6.
    L.B. Morton, J.M. Pellock, Curr. Pharm. Des. 6, 879 (2000)CrossRefGoogle Scholar
  7. 7.
    N.S. Gee, J.P. Brown, V.U. Dissanayake, J. Biol. Chem. 271, 5768 (1996)CrossRefGoogle Scholar
  8. 8.
    L. Hongki, H.S. Yathirajan, L. Mallesha, Acta Cryst. 65, 783 (2009)Google Scholar
  9. 9.
    J.V.P. Katuri, V.S. Ekkundi, K. Nagarajan, Org. Process Res. Dev. 20, 1828 (2016)CrossRefGoogle Scholar
  10. 10.
    H.L. Yale, M. Kalkstin, J. Med. Chem. 10, 334 (1967)CrossRefGoogle Scholar
  11. 11.
    N.P. Peet, S. Sunder, R.J. Gregge, J. Org. Chem. 41, 2733 (1976)CrossRefGoogle Scholar
  12. 12.
    J.B. Jiang, D.P. Hesson, B.A. Dusak, D.L. Dexter, G.L. Kang, E. Hamel, J. Med. Chem. 33, 1721 (1990)CrossRefGoogle Scholar
  13. 13.
    K. Ozaki, Y. Yamada, T. Oine, T. Ishizuka, Y. Iwasawa, J. Med. Chem. 28, 568 (1985)CrossRefGoogle Scholar
  14. 14.
    S. Gatadi, T. V. Lakshmi, S. Nanduri, Eur. J. Med. Chem. 170, 157 (2019)CrossRefGoogle Scholar
  15. 15.
    J. Safari, S. Gandomi-Ravandi, J. Mol. Catal. A: Chem. 390, 1 (2014)CrossRefGoogle Scholar
  16. 16.
    R. Ramesh, A. Lalitha, RSC Adv 5, 51188 (2015)CrossRefGoogle Scholar
  17. 17.
    M.J. Hour, L.J. Huang, S.C. Kuo, Y. Xia, K. Bas tow, Y. Nakanishi, E. Hamel, K.H. Lee, J. Med. Chem. 43, 4479 (2000)CrossRefGoogle Scholar
  18. 18.
    H.L. Birch, G.M. Buckley, N. Davies, H.J. Dyke, E.J. Frost, P.J. Gilbert, D.R. Hannah, A.F. Haughan, M.J. Madigan, T. Morgan, W.R. Pitt, A.J. Ratcliffe, N.C. Ray, M.D. Richard, A. Sharpe, A.J. Taylor, J.M. Whitworth, S.C. Williams, Bioorg. Med. Chem. Lett. 15, 5335 (2005)CrossRefGoogle Scholar
  19. 19.
    G. Bonola, P. Da Re, M.J. Magistretti, E. Massarani, I. Setnikar, J. Med. Chem. 11, 1136 (1968)CrossRefGoogle Scholar
  20. 20.
    J. W. Bolger, US patent 3257397 (1966)Google Scholar
  21. 21.
    K. Okumura, T. Oine, Y. Yamada, G. Hayashi, M. Nakama, J. Med. Chem. 11, 348 (1968)CrossRefGoogle Scholar
  22. 22.
    E. Cohen, B. Klarberg, J.R. Jr, Vaughan. J. Am. Chem. Soc. 81, 5508 (1959)CrossRefGoogle Scholar
  23. 23.
    V. Alagarsamy, V.R. Solomon, M. Murugan, Bioorg. Med. Chem. 15, 4009 (2007)CrossRefGoogle Scholar
  24. 24.
    J. I. Levin, P. I. Chan, T. Bailey, A. S. Jr. Katocs, A. M. Venkatesan, Bioorg. Med. Chem. Lett. 4, 1141 (1994)Google Scholar
  25. 25.
    R. Ramesh, P. Kalisamy, J.G. Malecki, A. Lalitha, Synlett 29, 203 (2018)CrossRefGoogle Scholar
  26. 26.
    E. S. Schipper, US patent 3265697 (1966)Google Scholar
  27. 27.
    N. Hirose, S. Kuriyama, S. Sohda, K. Sakaguchi, H. Yamamoto, Chem. Pharm. Bull. 21, 1005 (1973)CrossRefGoogle Scholar
  28. 28.
    C. Mustazza, A. Borioni, I. Sestili, M. Sbraccia, A. Rodomonte, R. Ferretti, M.R. Del Giudice, Chem. Pharm. Bull. 54, 611 (2006)CrossRefGoogle Scholar
  29. 29.
    S. Schramm, E. Schmitz, E. Grundemann, J. Prakt. Chem. 326, 279 (1984)CrossRefGoogle Scholar
  30. 30.
    K.G. Guggenheim, H. Toru, M. Kurth, J. Org Lett 14, 3732 (2012)CrossRefGoogle Scholar
  31. 31.
    A. Iida, M. Matsuoka, H. Hasegawa, N. Vanthuyne, D.l Farran, C. Roussel, O. Kitagawa, J. Org. Chem. (2019)Google Scholar
  32. 32.
    J.P. Michael, Nat. Prod. Rep. 25, 166 (2008)CrossRefGoogle Scholar
  33. 33.
    J. Imagawa, K. Sakai, Eur. J. Pharmacol. 131, 257 (1986)CrossRefGoogle Scholar
  34. 34.
    R.Q. Dempcy, E.B. Skibo, Biochemistry 30, 8480 (1991)CrossRefGoogle Scholar
  35. 35.
    S.L. Gackenheimer, J.M. Schaus, D.R. Gehlert, J. Pharmacol. Exp. Ther. 274, 1558 (1995)Google Scholar
  36. 36.
    M.S. Molamas, J. Miller, J. Med. Chem. 34, 1492 (1991)CrossRefGoogle Scholar
  37. 37.
    A. Darehkordi, F. Zand-Vakili, A.R. Talebizadeh, Tetrahedron Lett. 57, 498 (2016)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of ChemistryVali-e-Asr University of RafsanjanRafsanjanIran

Personalised recommendations