Advertisement

TiO2 nanoparticles and ionic liquid platform for selective electrochemical determination of indacaterol in pharmaceutical formulations and human fluids: application to content uniformity

  • Shimaa A. AttyEmail author
  • Maha F. Abdel Ghany
  • Lobna A. Hussein
  • Nancy Magdy
  • Hend Z. Yamani
Original Paper
  • 18 Downloads

Abstract

The present work described the first voltammetric sensor for the estimation of indacaterol (IND) in the presence of its co-formulated drug glycopyrronium bromide. Indacaterol (IND) is used to treat chronic obstructive pulmonary disease, which is a major cause of morbidity and mortality worldwide so the quick analysis of minor concentrations of this drug is very important. Titanium(IV) oxide nanoparticles (TiO2-NPs) and the ionic liquid (IL) n-hexyl-3-methylimidazolium hexafluorophosphate were used for the new formulated carbon paste electrode. Other factors, such as the pH of the solution, the TiO2-NP concentration and the scan rate, were also optimized using cyclic voltammetry. Scanning electron microscopy, chronoamperometry and electrochemical impedance spectroscopy were utilized for determination of the character of the electrochemical sensor. Moreover, the electrochemical redox mechanism of IND at the proposed sensor was studied. Under the optimum conditions, the proposed TiO2-NP–IL–MCPE showed good linearity over a concentration range of 2.00 nM–200.00 mM using square wave voltammetry. The LOD was found to be 500 pM, indicating excellent sensitivity. Satisfactory recoveries of IND from pharmaceutical formulations, content uniformity tests and human plasma and urine were achieved, clearly revealing that the new sensor can be used in the clinical analysis of IND and in quality control laboratories.

Keywords

Indacaterol TiO2 nanoparticles Ionic liquid Square wave voltammetry Plasma Urine 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

References

  1. 1.
    J.E. Frampton, QVA149 (indacaterol/glycopyrronium fixed-dose combination): a review of its use in patients with chronic obstructive pulmonary disease. Drugs 74, 465 (2014)CrossRefPubMedGoogle Scholar
  2. 2.
    M.J. O’Neil, The Merck index: an encyclopedia of chemicals, drugs, and biologicals, 15th edn. (RSC Publishing, Cambridge, 2013)Google Scholar
  3. 3.
    Y.A. Salem, D.T. Sherbiny, D.R. Wasseef, S.M. Ashry, HPLC determination of indacaterol maleate in pharmaceutical preparations adopting ultraviolet and fluorescence detection. Int. J. Pharm Sci. Res. 6(2), 1324–1332 (2015)Google Scholar
  4. 4.
    S. Zayed, F. Belal, Rapid simultaneous determination of indacaterol maleate and glycopyrronium bromide in inhaler capsules using a validated stability-indicating monolithic LC method. Chem. Cent. J. 11, 1–36 (2017)CrossRefGoogle Scholar
  5. 5.
    C. Emotte, O. Heudi, F. Deglave, A. Bonvie, L. Masson, F. Picard, O. Kretz, Validation of an on-line solid-phase extraction method coupled to liquid chromatography–tandem mass spectrometry detection for the determination of Indacaterol in human serum. J. Chromatogr. B Biomed. Sci. Appl. 1(895), 1–9 (2012)Google Scholar
  6. 6.
    W.G. Ammari, Z. Al-Qadhi, M. Khalil, R. Tayyem, S. Qammaz, G. Oriquat, H. Chrystyn, Indacaterol determination in human urine: validation of a liquid–liquid extraction and liquid chromatography–tandem mass spectrometry analytical method. J. Aerosol Med. Pulm. Drug Deliv. 28(3), 202–210 (2015)CrossRefPubMedGoogle Scholar
  7. 7.
    S.M. El-Ashry, D.R. El-Wasseef, D.T. El-Sherbiny, Y.A. Salem, Spectrophotometric and spectrofluorimetric determination of indacaterol maleate in pure form and pharmaceutical preparations: application to content uniformity. J. Lumin. 30(6), 891–897 (2015)CrossRefGoogle Scholar
  8. 8.
    Y.A. Salem, D.T. El-Sherbiny, D.R. El-Wasseef, S.M. El-Ashry, Spectroscopic study on indacaterol maleate: analytical applications for quality control of capsules. Int. J. Pharm Sci. Res. 6, 592–605 (2015)Google Scholar
  9. 9.
    M.F.A. Ghany, L.A. Hussein, N. Magdy, H.Z. Yamani, Simultaneous spectrophotometric determination of indacaterol and glycopyrronium in a newly approved pharmaceutical formulation using different signal processing techniques of ratio spectra. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 157(15), 251–257 (2016)CrossRefGoogle Scholar
  10. 10.
    N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors. Chem. Soc. Rev. 39(5), 1747–1763 (2010)CrossRefPubMedGoogle Scholar
  11. 11.
    N.N. Salama, H.E. Zaazaa, S.M. Azab, S.A. Atty, N.M. El-Kosy, M.Y. Salem, A novel cesium modified carbon paste electrode for rapid selective determination of ropinirole in presence of co-administered and interference substances. Sens. Actuators B Chem. 240, 1291–1301 (2017)CrossRefGoogle Scholar
  12. 12.
    S.A. Atty, G.A. Sedik, F.A. Morsy, D.M. Naguib, H.E. Zaazaa, A novel sensor aluminum silicate modified carbon paste electrode for determination of anti-depressant dothiepin HCl in pharmaceutical formulation and biological fluids. Microchem. J. 1(148), 725–734 (2019)CrossRefGoogle Scholar
  13. 13.
    R.C. Alkire, Y. Gogotsi, P. Simon, Nanostructured Materials in Electrochemistry (Wiley, New York, 2008)Google Scholar
  14. 14.
    C. Cai, J. Chen, Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal. Biochem. 332, 75–83 (2004)CrossRefPubMedGoogle Scholar
  15. 15.
    N.N. Salama, H.E. Zaazaa, S.M. Azab, S.A. Atty, N.M. El-Kosy, M.Y. Salem, Utility of gold nanoparticles/silica modified electrode for rapid selective determination of mebeverine in micellar medium: comparative discussion and application in human serum. Ionics 22(6), 957–966 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Mazloum-Ardakani, H. Beitollahi, M.K. Amini, F. Mirkhalaf, M. Abdollahi-Alibeik, New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon paste electrode. Sens. Actuators B 151(1), 243–294 (2010)CrossRefGoogle Scholar
  17. 17.
    M.A. Mohamed, S.A. Atty, H.A. Merey, T.A. Fattah, C.W. Foster, C.E. Banks, Titanium nanoparticles (TiO2)/graphene oxide nanosheets (GO): an electrochemical sensing platform for the sensitive and simultaneous determination of benzocaine in the presence of antipyrine. Analyst 142(19), 3674–3679 (2017)CrossRefPubMedGoogle Scholar
  18. 18.
    M. Beytur, F. Kardaş, O. Akyıldırım, A. Özkan, B. Bankoğlu, H. Yüksek, M.L. Yola, N. Atar, A highly selective and sensitive voltammetric sensor with molecularly imprinted polymer based silver@gold nanoparticles/ionic liquid modified glassy carbon electrode for determination of ceftizoxime. J. Mol. Liq. 251, 212–217 (2018)CrossRefGoogle Scholar
  19. 19.
    S. Mert, B. Bankoğlu, A. Özkan, N. Atar, M.L. Yola, Electrochemical sensing of ractopamine by carbon nitride nanotubes/ionic liquid nanohybrid in presence of other β-agonists. J. Mol. Liq. 254, 8–11 (2018)CrossRefGoogle Scholar
  20. 20.
    S. Salmanpour, A. Sadrnia, F. Karimi, N. Majani, M.L. Yola, V.K. Gupta, NiO nanoparticle decorated on single-wall carbon nanotubes and 1-butyl-4-methylpyridinium tetrafluoroborate for sensitive raloxifene sensor. J. Mol. Liq. 254, 255–259 (2018)CrossRefGoogle Scholar
  21. 21.
    H. Medetalibeyoğlu, S. Manap, Ö.A. Yokuş, M. Beytur, F. Kardaş, O. Akyıldırım, V. Özkan, H. Yüksek, M.L. Yola, N. Atar, Fabrication of Pt/Pd nanoparticles/polyoxometalate/ionic liquid nanohybrid for electrocatalytic oxidation of methanol. J. Electrochem. Soc. 165(5), F338–F341 (2018)CrossRefGoogle Scholar
  22. 22.
    M.L. Yola, C. Göde, N. Atar, Determination of rutin by CoFe2O4 nanoparticles ionic liquid nanocomposite as a voltammetric sensor. J. Mol. Liq. 246, 350–353 (2017)CrossRefGoogle Scholar
  23. 23.
    United States Pharmacopoeial Convention, United States Pharmacopoeia, USP 35 NF 25 Inc., USA 905, Rockville. MD, (2013)Google Scholar
  24. 24.
    R.G. Compton, C.E. Banks, Understanding Voltammetry (World Scientific, Singapore, 2011)CrossRefGoogle Scholar
  25. 25.
    A.A. Ensafi, H. Bahrami, B. Rezaei, H. Karimi-Maleh, Application of ionic liquid–TiO2 nanoparticle modified carbon paste electrode for the voltammetric determination of benserazide in biological samples. Mater. Sci. Eng. C 33(2), 831–835 (2013)CrossRefGoogle Scholar
  26. 26.
    B. Nigović, S. Jurić, A. Mornar, I. Malenica, Electrochemical studies of ropinirole, an anti-Parkinson’s disease drug. J. Chem. Sci. 125(5), 1197–1205 (2013)CrossRefGoogle Scholar
  27. 27.
    D.K. Gosser, Cyclic Voltammetry, Simulation and Analysis of Reaction Mechanism (Wiley-VCH, New York, 1993)Google Scholar
  28. 28.
    E. Laviron, L. Roullier, C.A. Degrand, A multilayer model for the study of space distributed redox modified electrodes: part II. Theory and application of linear potential sweep voltammetry for a simple reaction. J. Electroanal. Chem. Interfacial Electrochem. 112(1), 11–23 (1980)CrossRefGoogle Scholar
  29. 29.
    J. Brade, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical Methods: Fundamentals and Applications, vol. 5 (Wiley, New York, 1980)Google Scholar
  30. 30.
    ICH Q2R1, Validation of Analytical Procedures, Proceedings of the International Conference on Harmonization, Geneva, (2005)Google Scholar
  31. 31.
    M. Kagan, J. Dain, L. Peng, C. Reynolds, Metabolism and pharmacokinetics of indacaterol in humans. Drug Metab. Pharmacokinet. 40(9), 1712–1722 (2012)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  • Shimaa A. Atty
    • 1
    Email author
  • Maha F. Abdel Ghany
    • 2
  • Lobna A. Hussein
    • 2
  • Nancy Magdy
    • 2
  • Hend Z. Yamani
    • 2
  1. 1.Pharmaceutical Chemistry DepartmentNational Organization for Drug Control and Research (NODCAR)GizaEgypt
  2. 2.Pharmaceutical Analytical Chemistry Department, Faculty of PharmacyAin Shams UniversityCairoEgypt

Personalised recommendations