Advertisement

Journal of the Iranian Chemical Society

, Volume 17, Issue 2, pp 283–295 | Cite as

Cu complex grafted on the porous materials: synthesis, characterization and comparison of their antibacterial activity with nano-Cu/NaY zeolite

  • Zohreh Mortezaei
  • Mojgan ZendehdelEmail author
  • Mohammad Ali Bodaghifard
Original Paper
  • 17 Downloads

Abstract

In this work, the copper complex is introduced to porous materials, MCM-41 and NaY zeolite, by two ways. In the first way, nano-copper was incorporated into NaY zeolite (NaY/nano-Cu), and in the second way, alkylaminopyridine/Cu complex grafted on MCM-41 and HY zeolite pores (Z-HY@Pr-Py, Z-HY@Pr-Py/Cu). The prepared composites have been characterized by several techniques: scanning electron microscopy, energy-dispersive X-ray analysis chemical analysis, diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, powder X-ray diffraction analysis and thermogravimetric analysis. The results have been shown that the Cu complex and nano-copper ions were supported successfully on porous materials. The synthesized samples were investigated in vitro for antibacterial activity against Gram-positive (B. subtilis and S. aureus) and Gram-negative (E. coli and P. aeruginosa) bacteria and compared with standard drugs. The results show that introducing nano-copper or anchoring the Cu complex to porous materials has affected the inhibition of bacterial growth. Also, there is no significant releasing of copper ions from alkylaminopyridine/Cu complex which was grafted on porous materials in comparison with NaY/nano-Cu until 24 h.

Keywords

Alkylaminopyridine/Cu complex Porous materials Nano-copper Antibacterial agent Release of nanoparticles 

Notes

Acknowledgment

Thanks to the Iranian Nanotechnology Initiative and the Research Council of Arak University and Center of Excellence in the Chemistry Department of Arak University for supporting this work.

References

  1. 1.
    F. Zamani, M. Zendehdel, A. Mobinikhaledi, M. Azarkish, Micropor. Mesopor. Mater. 2, 18–27 (2015)CrossRefGoogle Scholar
  2. 2.
    L. Ferreira, A.M. Fonseca, G. Botelho, C. Almeida-Aguiar, I.C. Neves, Micropor. Mesopor. Mater. 160, 126–132 (2012)CrossRefGoogle Scholar
  3. 3.
    K. Imai, H. Ogawa, V.N. Bui, H. Inoue, J. Fukuda, M. Ohba, Y. Yamamoto, K. Nakamura, Antiviral Res. 93, 225–233 (2012)PubMedCrossRefGoogle Scholar
  4. 4.
    A. Naz, Sh Arun, S.S. Narvi, M. Siraj-Alam, A. Singh, P. Bhartiya, P.K. Dutta, Int. J. Biol. Macromol. 110, 215–226 (2018)PubMedCrossRefGoogle Scholar
  5. 5.
    Y.N. Chang, M. Zhang, L. Xia, J. Zhang, G. Xing, Materials. 5, 2850–2871 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D. Jimenez de Aberasturi, I. Ruiz de Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Trends Biotechnol. 30, 499–511 (2012)PubMedCrossRefGoogle Scholar
  7. 7.
    A.N. Kursunlu, E. Guler, F. Sevgi, B. Ozkalp, J. Mol. Struct. 1048, 476–481 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Durgun, H. Turkmen, M. Ceruso, C.T. Supuran, Bioorg. Med. Chem. Lett. 25, 2377–2381 (2015)PubMedCrossRefGoogle Scholar
  9. 9.
    Z. Piri, Z. Moradi-Shoeili, A. Assoud, Inorg. Chem. Commun. 84, 122–126 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Antonijevic-Nikolic, J. Antic-Stankovic, B. Drazic, S. Tanaskovic, J. Mol. Struct. 1148, 41–48 (2019)CrossRefGoogle Scholar
  11. 11.
    I.M. Stanojevic, I. Aleksic, N.S. Draskovic, B.D. Glisic, S. Vojnovic, J. Nikodinovic-Runic, J. Serb. Chem. Soc. 82(12), 1357–1367 (2017)CrossRefGoogle Scholar
  12. 12.
    M.H. Klingele, S. Brooker, Coord. Chem. Rev. 241, 119–132 (2003)CrossRefGoogle Scholar
  13. 13.
    C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, C. Marzano, Chem. Rev. 114, 815–862 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    I.P. Ejidike, P.A. Ajibade, Molecules 20, 9788–9802 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    L. Tahmasbi, T. Sedaghat, H. Motamedi, M. Kooti, J. Solid State Chem. 258, 517–525 (2018)CrossRefGoogle Scholar
  16. 16.
    A.F. Moreira, D.R. Dias, I.J. Correia, Micropor. Mesopor. Mater. 236, 141–157 (2016)CrossRefGoogle Scholar
  17. 17.
    L. Wang, W. Ding, Y. Sun, Mater. Res. Bull. 83, 230–249 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Zendehdel, M.A. Bodaghifard, H. Behyar, Z. Mortezaei, Micropor. Mesopor. Mater. 266, 83–89 (2018)CrossRefGoogle Scholar
  19. 19.
    W.H. Zhang, J.L. Shi, L.Z. Wang, D.S. Yan, Chem. Mater. 12, 1408 (2000)CrossRefGoogle Scholar
  20. 20.
    S. Rostamnia, H. Xin, J. Mol. Liquids. 195, 30–34 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Esmaeilpour, J. Javidi, F. Nowroozi-Dodeji, M. Mokhtari-Abarghoui, J. Mol. Catal. A: Chem. 393, 18–29 (2014)CrossRefGoogle Scholar
  22. 22.
    Sh He, J. Yao, P. Jiang, D. Shi, H. Zhang, S. Xie, Sh Pang, H. Gao, Langmuir 17, 1571–1575 (2001)CrossRefGoogle Scholar
  23. 23.
    J.P. Ruparelia, A. Kumar-Chatterjee, S.P. Duttagupta, S. Mukherji, Acta Biomater. 4, 707–716 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    J.J. Hwang, T.W. Ma, Mater. Chem. Phys. 136, 613–623 (2012)CrossRefGoogle Scholar
  25. 25.
    R.M. Barrer, Hydrothermal chemistry of zeolite (Academic Press, New York, 1982)Google Scholar
  26. 26.
    K. Sarkar, K. Dhara, M. Nandi, P. Roy, A. Bhaumik, P. Banerjee, Adv. Funct. Mater. 19, 223–234 (2009)CrossRefGoogle Scholar
  27. 27.
    M. Zendehdel, F. Zamani, H. Khanmohamadi, Micropor. Mesopor. Mater. 225, 552–563 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Zendehdel, G. Cruciani, M. Dondi, J. Porous Mater. 19, 361–368 (2011)CrossRefGoogle Scholar
  29. 29.
    M. Zendehdel, H. Khanmohamadi, Mokhtari. J. Chin. Chem. Soc. 57, 205–212 (2010)CrossRefGoogle Scholar
  30. 30.
    B. Kumar-Kundu, V. Chhabra, N. Malviya, R. Ganguly, G.S. Mishra, S. Mukhopadhyay, Micropor. Mesopor. Mater. 271, 100–117 (2018)CrossRefGoogle Scholar
  31. 31.
    P.T. Huong, B.K. Lee, J. Kim, Process Saf. Environ. Prot. 100, 272–280 (2016)CrossRefGoogle Scholar
  32. 32.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmidt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  33. 33.
    A. Sakthivel, W. Sun, G. Raudaschl-Sieber, A.S.T. Chiang, M. Hanzlik, F.E. Kuhn, Catal. Commun. 7(5), 302–307 (2006)CrossRefGoogle Scholar
  34. 34.
    M.J. Jia, A. Seifert, M. Berger, H. Giegengack, S. Schulze, W.R. Thiel, Chem. Mater. 16, 877 (2004)CrossRefGoogle Scholar
  35. 35.
    M.H. Lim, A. Stein, Chem. Mater. 11, 3285 (1999)CrossRefGoogle Scholar
  36. 36.
    K. Li, J. Valla, J. Garcia-Martinez, Chem. Cat. Chem. 6, 46–66 (2014)Google Scholar
  37. 37.
    T.H. Huang, S.L. Zhu, X.L. Xiong, J.D. Li, H. Yang, X. Huang, X.R. Huang, K. Zhang, J. Mol. Struct. 1143, 431–437 (2017)CrossRefGoogle Scholar
  38. 38.
    D. Chandra, T. Yokoi, T. Tatsumi, A. Bhaumik, Chem. Mater. 19, 5347 (2007)CrossRefGoogle Scholar
  39. 39.
    H.F. Xiang, S.C. Chan, K.K.Y. Wu, C.M. Che, P.T. Lai, Chem. Commun. 11, 1408–1410 (2005)CrossRefGoogle Scholar
  40. 40.
    M. Hasegawa, K. Kumagai, M. Terauchi, A. Nakao, J. Okubo, T. Hoshi, Monatsh. Chem. 133, 285 (2002)CrossRefGoogle Scholar
  41. 41.
    T.H. Huang, M.H. Zhang, Inorg. Chim. Acta 416, 28–34 (2014)CrossRefGoogle Scholar
  42. 42.
    S.I. Mostafa, Transition Met. Chem. 23, 397 (1998)CrossRefGoogle Scholar
  43. 43.
    M. Salavati-Niasari, E. Zamani, M.R. Ganjali, P. Norouzi, J. Mol. Catal. A: Chem. 261, 196–201 (2007)CrossRefGoogle Scholar
  44. 44.
    M.J. Hudson, J.A. Knowles, J. Mater. Chem. 6, 89 (1996)CrossRefGoogle Scholar
  45. 45.
    M. Kruk, M. Jaroniec, Y. Sakamoto, O. Terasaki, R. Ryoo, C.H. Ko, J. Phys. Chem. B. 104, 292–301 (2000)CrossRefGoogle Scholar
  46. 46.
    M. Zendehdel, A. Mobinikhaledi, Z. Mortezaei, J. Iran. Chem. Soc. 2, 283–292 (2014)Google Scholar
  47. 47.
    C. Jin, W.B. Fan, Y.J. Jia, B.B. Fan, J.H. Ma, R.F. Li, J. Mol. Catal. A: Chem. 249, 23–30 (2006)CrossRefGoogle Scholar
  48. 48.
    S. Jana, S. Bhunia, B. Dutta, S. Koner, Appl. Catal. A: Gen. 392, 225–232 (2011)CrossRefGoogle Scholar
  49. 49.
    A. Corma, H. Garcia, Chem. Rev. 102, 3837 (2002)PubMedCrossRefGoogle Scholar
  50. 50.
    A. Sakthivel, J. Zhao, F.E. Kuhn, Stud. Surf. Sci. Catal. 156, 237 (2005)CrossRefGoogle Scholar
  51. 51.
    G. Droval, I. Aranberri, L. German, E. Ivanov, E. Dimitrova, R. Kotsilkova, M. Verelst, J. Dexpert-Ghys, J. Thermoplast. Compos. 5, 1–18 (2012)Google Scholar
  52. 52.
    M.A. Neelakantan, S.S. Marriappan, J. Dharmaraja, T. Jeyakumar, K. Muthukumaran, Spectrochim. Acta A 71, 628–635 (2008)CrossRefGoogle Scholar
  53. 53.
    R.S. Joseyphus, M.S. Nair, Mycobiology. 36, 93–98 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    K. Mounika, B. Anupama, J. Pragathi, C. Gyanakumari, J. Sci. Res. 2, 513–524 (2010)CrossRefGoogle Scholar
  55. 55.
    T.D. Thangadurai, K. Natarajan, Transition Met. Chem. 26, 500–504 (2001)CrossRefGoogle Scholar
  56. 56.
    N. Farrell, Coord. Chem. Rev. 252, 1–31 (2007)Google Scholar
  57. 57.
    A. Leite, L.J. Bessa, A.M.G. Silva, P. Gameiro, B. de Castro, M. Rangel, J. Inorg. Biochem. 197, 110704 (2019)PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Y. Wan, D. Zhang, Y. Wang, P. Qi, J. Wu, B. Hou, J. Hazard. Mater. 186, 306–312 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    A. Pramanik, D. Laha, D. Bhattacharya, P. Pramanik, P. Karmakar, Colloids Surf. B 96, 50–55 (2012)CrossRefGoogle Scholar
  60. 60.
    M. Aidi, H. Keypour, A. Shooshtari, M. Mahmoudabadi, M. Bayat, Z. Ahmadvand, R. Karamian, M. Asadbegy, S. Tavatli, R.W. Gable, Polyhedron 167, 93–102 (2019)CrossRefGoogle Scholar
  61. 61.
    A.S. Reddy, J. Mao, S. Vanitha, V.N. Badavath, L.S. Krishna, M. Lavanya, M.V.J. Kumar, J. Saudi. Chem. Soc. (2019).  https://doi.org/10.1016/j.jscs.2019.04.003 CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  • Zohreh Mortezaei
    • 1
  • Mojgan Zendehdel
    • 1
    • 2
    Email author
  • Mohammad Ali Bodaghifard
    • 1
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceArak UniversityArakIran
  2. 2.Institute of Nanosciences and NanotechnologyArak UniversityArakIran

Personalised recommendations