Advertisement

Journal of the Iranian Chemical Society

, Volume 17, Issue 2, pp 307–317 | Cite as

Electrochemical performance of mesoporous carbon FBNC-700 in sodium citrate electrolyte

  • Qian Wang
  • Jiaxi Wang
  • Shuai Li
  • Wankai Wang
  • Xia Zhao
  • Huixia Feng
  • Heming LuoEmail author
Original Paper
  • 40 Downloads

Abstract

The electrochemical performance of supercapacitors with mesoporous carbon FBNC-700 as electrode material and sodium citrate solution as electrolyte was investigated using a two-electrode system. The results revealed a specific capacitance of mesoporous carbon FBNC-700 of 112.4 F g−1 at current density of 0.5 A g−1 in 0.75 M sodium citrate electrolyte in the voltage window from −1.0 to 0 V. The maximum stable voltage window of sodium citrate electrolyte reached 2.1 V (−1.3 to 0.8 V), and mesoporous carbon FBNC-700 exhibited high cycle stability (14.53% loss over 5000 cycles at 2 A g−1 current density). In addition, the energy density of the capacitor reached 87.79 Wh kg−1 at the maximum voltage window, being significantly higher than that obtained using H2SO4 or KOH electrolyte.

Keywords

Sodium citrate electrolyte Mesoporous carbon Supercapacitors Voltage window 

Notes

Acknowledgements

This work is partially supported by the National Nature Science Foundation of China (Nos. 21667017 and 21664009) and Gansu Province University Fundamental Research Funds.

References

  1. 1.
    L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520–2531 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    E. Frackowiak, F. Béguin, Carbon 39, 937–950 (2001)CrossRefGoogle Scholar
  3. 3.
    M. Sevilla, R. Mokaya, Energy Environ. Sci. 7, 1250–1280 (2014)CrossRefGoogle Scholar
  4. 4.
    N. Uladzimir, F. Sviatlana, D. Anna, MRS Adv. 1, 855–859 (2016)CrossRefGoogle Scholar
  5. 5.
    H. Lee, S.C. Mi, I.H. Kim, J.D. Nam, Y. Lee, Synth. Met. 160, 1055–1059 (2010)CrossRefGoogle Scholar
  6. 6.
    V.D. Patake, C.D. Lokhande, O.S. Joo, Appl. Surf. Sci. 255, 4192–4196 (2009)CrossRefGoogle Scholar
  7. 7.
    J. Yan, Z.J. Fan, T. Wei, W.Z. Qian, M.L. Zhang, F. Wei, Carbon 48, 3825–3833 (2010)CrossRefGoogle Scholar
  8. 8.
    V. Ruiz, C. Blanco, E. Raymundo-Pinero, V. Khomenko, F. Beguin, R. Santamarıa, Electrochim. Acta 52, 4969–4973 (2007)CrossRefGoogle Scholar
  9. 9.
    C. Peng, S.W. Zhang, D. Prog, Nat. Sci. 18, 777–788 (2008)Google Scholar
  10. 10.
    P.W. Ruch, D. Cericola, A. Foelske, R. Kötz, A. Wokaun, Electrochim. Acta 55, 2352–2357 (2010)CrossRefGoogle Scholar
  11. 11.
    Y.Q. Lai, X.X. Chen, Z. Zhang, J. Li, Y.X. Liu, Electrochim. Acta 56, 6426–6430 (2011)CrossRefGoogle Scholar
  12. 12.
    G. Lota, J. Tyczkowski, R. Kapica, K. Lota, E. Frackowiak, J. Power Sources 195, 7535–7539 (2010)CrossRefGoogle Scholar
  13. 13.
    K. Jurewicz, R. Pietrzak, P. Nowicki, H. Wachowska, Electrochim. Acta 53, 5469–5475 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Galiński, A. Lewandowski, I. Stępniak, Electrochim. Acta 51, 5567–5580 (2006)CrossRefGoogle Scholar
  15. 15.
    K. Torchała, K. Kierzek, J. Machnikowski, Electrochim. Acta 86, 260–266 (2012)CrossRefGoogle Scholar
  16. 16.
    X. Yang, Y.S. He, G. Jiang, X.Z. Liao, Z.F. Ma, Electrochem. Commun. 13, 1166–1169 (2011)CrossRefGoogle Scholar
  17. 17.
    L. Demarconnay, E. Raymundo-Piñero, F. Béguin, Electrochem. Commun. 12, 1275–1281 (2010)CrossRefGoogle Scholar
  18. 18.
    Y.M. Wang, J.Y. Cao, Y. Zhou, J.H. Ouyang, D.C. Jia, L.X. Guo, J. Electrochem. Soc. 682, 23–28 (2012)Google Scholar
  19. 19.
    H.Y. Lee, J.B. Goodenough, J. Solid State Chem. 144, 220–223 (2015)CrossRefGoogle Scholar
  20. 20.
    J. Cao, Y. Wang, Y. Zhou, D. Jia, J.H. Ouyang, L. Guo, J. Electroanal. Chem. 682, 23–28 (2012)CrossRefGoogle Scholar
  21. 21.
    K. Karthikeyan, D. Kalpana, S. Amaresh, Y.S. Lee, RSC Adv. 2, 12322 (2012)CrossRefGoogle Scholar
  22. 22.
    C.Z. Yuan, H. Dou, B. Gao, L.H. Su, X.G. Zhang, J. Solid State Electrochem. 178, 1859–1866 (2008)Google Scholar
  23. 23.
    H.M. Luo, Y.F. Yang, B. Mu, Y.Z. Chen, J.Q. Zhang, X. Zhao, Carbon 100, 214–222 (2016)CrossRefGoogle Scholar
  24. 24.
    M.P. Bichat, E. Raymundo-Piñero, F. Béguin, Carbon 48, 4351–4361 (2010)CrossRefGoogle Scholar
  25. 25.
    T. Brousse, M. Toupin, D. Bélanger, J. Electrochem. Soc. 151, A614 (2004)CrossRefGoogle Scholar
  26. 26.
    V. Scaravilli, L.D. Girolamo, E. Scotti, M. Busana, O. Biancolilli, P. Leonardi, A. Carlin, C. Lonati, M. Panigada, A. Pesenti, A. Zanella, Perfusion 33, 577 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    R.J. Walker, D.J. Wildman, S.J. Gasior, Air. Repair. 33, 1061–1067 (1983)Google Scholar
  28. 28.
    L.M. Naughton, R. Cedaro, Eur. J. Appl. Physiol. 64, 36–41 (1992)CrossRefGoogle Scholar
  29. 29.
    M.T. Linossier, D. Dormois, P. Brégère, A. Geyssant, C. Denis, Eur. J. Appl. Physiol. 76, 48–54 (1997)CrossRefGoogle Scholar
  30. 30.
    H.M. Luo, Y.Z. Chen, B. Wang, J. Zhang, X. Zhao, B. Mu, J. Solid State Electrochem. 21, 1–10 (2016)Google Scholar
  31. 31.
    T. Matthias, K. Katsumi et al., Pure Appl. Chem. 38, 25 (2015)Google Scholar
  32. 32.
    W.J. Shutt, Trans. Faraday Soc. 31, 636–637 (1935)CrossRefGoogle Scholar
  33. 33.
    S. Biniak, G. Szymański, J. Siedlewski, Carbon 35, 1799–1810 (1997)CrossRefGoogle Scholar
  34. 34.
    D. Hulicova-Jurcakova, M. Seredych, Q.L. Gao, T.J. Bandosz, Adv. Funct. Mater. 19, 438–447 (2010)CrossRefGoogle Scholar
  35. 35.
    E. Desimoni, G.I. Casella, A. Morone, A.M. Salvi, Surf Interface Anal. 15, 627–634 (2010)CrossRefGoogle Scholar
  36. 36.
    A.M. Puziy, O.I. Poddubnaya, R.P. Socha, J. Gurgul, M. Wisniewski, Carbon 46, 2113–2123 (2008)CrossRefGoogle Scholar
  37. 37.
    R.H. Bradley, I.L. Clackson, D.E. Sykes, Surf. Interface Anal. 22, 497 (2010)CrossRefGoogle Scholar
  38. 38.
    T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. Mclaughlin, N. Brown, Carbon 43, 2951–2959 (2005)CrossRefGoogle Scholar
  39. 39.
    R.J.J. Jansen, H.V. Bekkum, Carbon 33, 1021–1027 (1995)CrossRefGoogle Scholar
  40. 40.
    T.F. Qina, H.D. Chena, Y. Zhanga, X.T. Chena, L. Liua, D. Yana, H. Mab, J. Houc, F. Yuc, S. Penga, J. Power Sources 431, 232–238 (2019)CrossRefGoogle Scholar
  41. 41.
    A. Slesinski, C. Matei-Ghimbeu, K. Fic, F. Béguin, E. Frackowiak, Carbon 129, 758–765 (2017)CrossRefGoogle Scholar
  42. 42.
    P. Ratajczak, K. Jurewicz, P. Skowron, Q. Abbas, Franc, O. Béguin, Electrochim. Acta 130, 344–350 (2014)CrossRefGoogle Scholar
  43. 43.
    J.Q. Zhang, S.Y. Song, Y.Z. Chen, S.Y. Huang, P. Li, H.M. Luo, Appl. Surf. Sci. 442, 750–758 (2018)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  • Qian Wang
    • 1
  • Jiaxi Wang
    • 2
  • Shuai Li
    • 1
  • Wankai Wang
    • 1
  • Xia Zhao
    • 1
  • Huixia Feng
    • 1
  • Heming Luo
    • 1
    Email author
  1. 1.School of Petrochemical EngineeringLanZhou University of TechnologyLanzhouChina
  2. 2.School of Materials Science and Engineering of ChemistryNankai UniversityTianjinChina

Personalised recommendations