Advertisement

Facile and eco-friendly synthesis of TiO2 NPs using extracts of Verbascum thapsus plant: an efficient photocatalyst for reduction of Cr(VI) ions in the aqueous solution

  • R. Norouzi Esfahani
  • Sh. KhaghaniEmail author
  • A. Azizi
  • F. Mortazaeinezhad
  • M. Gomarian
Original Paper
  • 1 Downloads

Abstract

In this study, a fast and green synthesis of TiO2 nanoparticles (TiO2 NPs) is investigated using Verbascum thapsus (V. thapsus) plant aqueous extract as a reducing and stabilizing agent at room temperature. The TiO2 NPs formation and the optical properties were followed by the absorption spectra in ultraviolet–visible spectroscopy. This spectrum showed a strong absorption peak of around 356 nm. Moreover, the green synthesized TiO2 NPs were characterized by different techniques, for example, X-ray powder diffraction was used to analyze the phase and crystal structure, Fourier-transform infrared spectroscopy was conducted to know the functional groups involved in the NPs TiO2, and transmission electron microscopy was carried out to determine the morphology and size. The results showed a successful synthesis and anatase phase with spherical shape and smaller than 13 nm and also the presence of a few phytochemicals of the extracts around the synthesized TiO2 NPs, which acted as stabilizing the NPs. X-ray photoelectron spectroscopy analysis was carried out to characterize TiO2 NPs for evaluating the chemical states of the elements. The catalytic activity of the green synthesized TiO2 NPs was examined on photoreduction of Cr(VI) ions in the aqueous solution. The found conditions are as follows: [TiO2 NPs] = 750 mg/L, pH = 3.5, T = 25 °C and after 120 min of reaction photocatalytic reduction of Cr(VI) ions, 79.6% reduction efficacy (RE) was achieved. It was found that the reduction kinetic fitted the pseudo-first-order model. Finally, the photocatalyst reusability was investigated after five times of recovery; RE was reduced to 78.1%.

Keywords

Green synthesis Titanium nanoparticle Photocatalytic reduction Hexavalent chromium Kinetic study 

Notes

Acknowledgement

The authors wish to acknowledge the university authorities for providing the financial support to carry out this work.

References

  1. 1.
    K. Vidhya, M. Saravanan, G. Bhoopathi, V.P. Devarajan, S. Subanya, Appl. Nanosci. 5, 235–243 (2015)CrossRefGoogle Scholar
  2. 2.
    G. Zhang, X. Shen, Y. Yang, J. Phys. Chem. C 115, 7145–7152 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Sundrarajan, K. Bama, M. Bhavani, S. Jegatheeswaran, S. Ambika, A. Sangili, P. Nithya, R. Sumathi, J. Photochem. Photobiol. 171, 117–124 (2017)CrossRefGoogle Scholar
  4. 4.
    D. Mukherjee, S. Ghosh, S. Majumdar, K. Annapurna, J. Environ. Chem. Eng. 4, 639–650 (2016)CrossRefGoogle Scholar
  5. 5.
    D.S. Bhatkhande, V.G. Pangarkar, A.A. Beenackers, J. Chem. Technol. Biotechnol. 77, 102–116 (2001)CrossRefGoogle Scholar
  6. 6.
    M. Nasrollahzadeh, S.M. Sajadi, Ceram. Int. 41, 14435–14439 (2015)CrossRefGoogle Scholar
  7. 7.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)CrossRefGoogle Scholar
  8. 8.
    G. Centi, P. Ciambelli, S. Perathoner, P. Russo, Catal. Today 75, 3–15 (2002)CrossRefGoogle Scholar
  9. 9.
    S.S. Muniandy, N.H. Mohd Kaus, Z.-T. Jiang, M. Altarawneh, H.L. Lee, RSC Adv. 7, 48083–48094 (2017)CrossRefGoogle Scholar
  10. 10.
    B. O’Regan, M. Grätzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  11. 11.
    K. Murugan, D. Dinesh, K. Kavithaa, M. Paulpandi, T. Ponraj, M.S. Alsalhi, S.J. Devanesan, R. Subramaniam, H. Rajaganesh, S. Wei, M. Kumar, G. Nicoletti, P. Benelli, Parasitol. Res. 115, 1085–1096 (2016)CrossRefGoogle Scholar
  12. 12.
    K. Kądzioła, I. Piwoński, A. Kisielewska, D. Szczukocki, B. Krawczyk, J. Sielski, Appl. Surf. Sci. 288, 503–512 (2014)CrossRefGoogle Scholar
  13. 13.
    R. Khan, M.H. Fulekar, J. Colloid Interface Sci. 475, 184–191 (2016)CrossRefGoogle Scholar
  14. 14.
    O.V. Kharissova, H.V.R. Dias, B.I. Kharisov, B.O. Pérez, V.M.J. Pérez, Trends Biotechnol. 31, 240–248 (2013)CrossRefGoogle Scholar
  15. 15.
    G. Nabi, N.R. Qurat-ul-Aain, M.Bilal Khalid, M. Tahir, M. Rafique, S. Rizwan, T. Hussain, A.Majid Iqbal, J. Inorg. Organomet. Polym Mater. 28, 1552–1564 (2018)CrossRefGoogle Scholar
  16. 16.
    N.I. Hulkoti, T.C. Taranath, Colloids Surf. B 121, 474–483 (2014)CrossRefGoogle Scholar
  17. 17.
    S.P. Goutam, G. Saxena, V. Singh, A.K. Yadav, R.N. Bharagava, K.B. Thapa, Chem. Eng. J. 336, 386–396 (2018)CrossRefGoogle Scholar
  18. 18.
    WHO, Guidelines for Drinking Water Quality (World Health Organization, Geneva, 2006)Google Scholar
  19. 19.
    G. Donmez, Z. Aksu, Process Biochem. 38, 751–762 (2002)CrossRefGoogle Scholar
  20. 20.
    Y.C. Zhang, M. Yang, G. Zhang, D.D. Dionysiou, Appl. Catal. B Environ. 142–143, 249–258 (2013)CrossRefGoogle Scholar
  21. 21.
    D. Chen, A.K. Ray, Chem. Eng. Sci. 56, 1561–1570 (2001)CrossRefGoogle Scholar
  22. 22.
    M. Shirzad Siboni, M.T. Samadi, J.K. Yang, S.M. Lee, Desalin Water Treat. 40, 77–83 (2012)CrossRefGoogle Scholar
  23. 23.
    K. Ramachandran, K. Kashyapa, R. Chand, The Useful Plants of India (Council of Scientific and Industrial Research, New Delhi, 1986)Google Scholar
  24. 24.
    A. Chevallier, Encyclopedia of Herbal Medicine (Dorling Kindersley Publishing Inc, New York, 2000)Google Scholar
  25. 25.
    T. Warashina, T. Miyase, A. Veno, Phytochemistry 31, 961–965 (1992)CrossRefGoogle Scholar
  26. 26.
    H. Hussain, S. Aziz, G.A. Miana, V.U. Ahmad, S. Anwar, I. Ahmed, Biochem. Syst. Ecol. 37, 124–126 (2009)CrossRefGoogle Scholar
  27. 27.
    L.A. Shaver, S.H. Leung, A. Puderbaugh, S.A. Angel, J. Chem. Educ. 88, 492–495 (2011)CrossRefGoogle Scholar
  28. 28.
    V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós, Methods Enzymol. 299, 152–178 (1999)CrossRefGoogle Scholar
  29. 29.
    K. Velayutham, A.A. Rahuman, G. Rajakumar, T. Santhoshkumar, S. Marimuthu, C. Jayaseelan, A. Bagavan, A.V. Kirthi, C. Kamaraj, A.A. Zahir, G. Elango, Parasitol. Res. 111, 2329–2337 (2012)CrossRefGoogle Scholar
  30. 30.
    R. Dobrucka, Iran. J. Pharm. Res. 16, 756–762 (2017)Google Scholar
  31. 31.
    T. Mahmood, M.T. Saddique, A. Naeem, P. Westerhoff, S. Mustafa, A. Alum, Ind. Eng. Chem. Res. 50, 10017–10023 (2011)CrossRefGoogle Scholar
  32. 32.
    W.F. Tan, S.J. Lu, F. Liu, X.H. Feng, J.Z. He, L.K. Koopal, Soil Sci. 173, 277–286 (2008)CrossRefGoogle Scholar
  33. 33.
    L.S. Clesceri, A.E. Greenberg, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, 1998)Google Scholar
  34. 34.
    E.E. Elemike, D.C. Onwudiwe, Z. Mkhize, Mater. Lett. 185, 452–455 (2016)CrossRefGoogle Scholar
  35. 35.
    J.C. Tauc, The Optical Properties of Solids (North Holland, Amsterdam, 1972)Google Scholar
  36. 36.
    C. Dette, M.A. Pérez-Osorio, C.S. Kley, P. Punke, C.E. Patrick, P. Jacobson, F. Giustino, S.J. Jung, K. Kern, Nano Lett. 14, 6533–6538 (2014)CrossRefGoogle Scholar
  37. 37.
    N. Wang, L. Zhu, K. Deng, Y. She, Y. Yu, H. Tang, Appl. Catal. B Environ. 95, 400–407 (2010)CrossRefGoogle Scholar
  38. 38.
    M. Hudlikar, S. Joglekar, M. Dhaygude, K. Kodam, Mater. Lett. 75, 196–199 (2012)CrossRefGoogle Scholar
  39. 39.
    J.S.J. Hargreaves, Catal. Struct. React. 2, 33–37 (2016)CrossRefGoogle Scholar
  40. 40.
    R.K.B. Bharti, S. Kumar, H.N. Lee, Sci. Rep. 6, 1–12 (2016)CrossRefGoogle Scholar
  41. 41.
    D. Hariharan, A.J. Christy, J. Mayandi, L.C. Nehru, Mater. Lett. 222, 45–49 (2018)CrossRefGoogle Scholar
  42. 42.
    N. Serpone, J. Photochem. Photobiol. 104, 1–12 (1997)CrossRefGoogle Scholar
  43. 43.
    K. Kabra, R. Chaudhary, R.L. Sawhney, Environ. Prog. 24, 487–495 (2008)CrossRefGoogle Scholar
  44. 44.
    J. Saien, A.R. Soleymani, J. Iran. Chem. Soc. 6, 602–611 (2009)CrossRefGoogle Scholar
  45. 45.
    L.B. Khalil, W.E. Mourad, M.W. Rophael, Appl. Catal. B Environ. 17, 267–273 (1998)CrossRefGoogle Scholar
  46. 46.
    T. Papadam, N.P. Xekoukoulotakis, I. Poulios, D. Mantzavinos, J. Photochem. Photobiol. 186, 308–315 (2007)CrossRefGoogle Scholar
  47. 47.
    J. Saien, A. Azizi, A.R. Soleymani, J. Iran. Chem. Soc. 11, 1439–1448 (2014)CrossRefGoogle Scholar
  48. 48.
    P. Sane, S. Chaudhari, P. Nemade, S. Sontakke, J. Environ. Chem. Eng. 6, 68–73 (2018)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of Ornamental Plants, Faculty of Agriculture, Arak BranchIslamic Azad UniversityArākIran
  2. 2.Department of Agronomy and Plant Breeding, Arak BranchIslamic Azad UniversityArākIran
  3. 3.Department of Chemistry, Faculty of ScienceArak UniversityArākIran
  4. 4.Department of Horticulture, Khorasgan (Isfahan) BranchIslamic Azad UniversityEsfahānIran

Personalised recommendations