Advertisement

Homocoupling of arylboronic acids catalyzed by dinuclear copper(I) complexes under mild conditions

  • Bing-Fan Long
  • Gui-Fang Qin
  • Qin Huang
  • Ting Xiong
  • Yan Mi
  • Fei-Long HuEmail author
  • Xian-Hong YinEmail author
Original Paper

Abstract

An efficient protocol for C–C coupling has been developed using three iodo-bridged copper(I) complexes as catalysts. Complexes [CuI(bpy)]2 (1), [CuI(phen)]2·DMF (2), and [CuI(Mephen)]2 (3) were successfully synthesized via solvothermal method (bpy = 2,2′-dipyridyl, phen = 1,10-phenanthroline, and Mephen = 2,9-dimethylphenanthroline). The self-coupling reaction of phenylboronic acid was selected as a model reaction to evaluate the catalytic property of the complexes. Moreover, this method tolerates various substituents on the arylboronic acids such as halogens, carbonyls, and nitro groups. It shows that the iodo-bridged Cu(I) center serves as the active site to activate molecular oxygen during the catalytic process. The result illustrates that these complexes were found to be excellent catalysts for self-coupling of arylboronic acids under mild conditions.

Keywords

Copper-catalyzed Boronic acids Self-coupling C–C bond formation Dinuclear Cu(I) complex 

Notes

Acknowledgements

The authors thank the financial supports from the National Natural Science Foundation of China (21701035, 21761004), Guangxi Natural Science Foundation (2018GXNSFAA138129, 2018GXNSFBA281085), and Specific research Project of Guangxi for research bases and talents (AD18126005, AD18126002).

Compliance with ethical standards

Conflict of interest

All of the authors declare no completing conflict.

Supplementary material

13738_2019_1728_MOESM1_ESM.doc (912 kb)
Supplementary material 1 (DOC 912 kb)

References

  1. 1.
    N. Miyaura, A. Suzuki, Chem. Rev. 95, 2457 (1995)CrossRefGoogle Scholar
  2. 2.
    D.A. Horton, G.T. Bourne, M.L. Smythe, Chem. Rev. 103, 893 (2003)CrossRefGoogle Scholar
  3. 3.
    P. Lloyd-Williams, E. Giralt, Chem. Soc. Rev. 30, 145 (2001)CrossRefGoogle Scholar
  4. 4.
    A.S. Demir, Ӧ. Reis, M. Emrullahoglu, J. Org. Chem. 68, 10130 (2003)CrossRefGoogle Scholar
  5. 5.
    A. Suzuki, Angew. Chem. Int. Ed. Engl. 50, 6722 (2011)CrossRefGoogle Scholar
  6. 6.
    C.E. Knappke, A.J. von Wangelin, Chem. Soc. Rev. 40, 4948 (2011)CrossRefGoogle Scholar
  7. 7.
    Y. Nakao, T. Hiyama, Chem. Soc. Rev. 40, 4893 (2011)CrossRefGoogle Scholar
  8. 8.
    A.H. Cherney, N.T. Kadunce, S.E. Reisman, Chem. Rev. 115, 9587 (2015)CrossRefGoogle Scholar
  9. 9.
    E. Mohammadi, B. Movassagh, J. Organomet. Chem. 822, 62 (2016)CrossRefGoogle Scholar
  10. 10.
    D.M. Kaphan, M.D. Levin, R.G. Bergman, K.N. Raymond, F.D. Toste, Science 350, 1235 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Si, C. Wang, N. Zhang, G. Zou, J. Org. Chem. 81, 4364 (2016)CrossRefGoogle Scholar
  12. 12.
    F. De Schouwer, L. Claes, N. Claes, S. Bals, J. Degrève, D.E. De Vos, Green Chem. 17, 2263 (2015)CrossRefGoogle Scholar
  13. 13.
    G. Aragay, J. Pons, V. Branchadell, J. Garcíaantón, X. Solans, M. Font-Bardía, J. Ros, Aust. J. Chem. 63, 257 (2010)CrossRefGoogle Scholar
  14. 14.
    A.D. Leon, J. Pons, J. García-Antón, X. Solans, M. Font-Bardía, J. Ros, Inorg. Chim. Acta 360, 2071 (2007)CrossRefGoogle Scholar
  15. 15.
    M.B. Ibrahim, S.M. Shakil Hussain, A. Fazal, M. Fettouhi, B. El Ali, J. Coord. Chem. 68, 432 (2015)CrossRefGoogle Scholar
  16. 16.
    O.Y. Poimanova, S.V. Radio, K.Y. Bilousova, V.N. Baumer, G.M. Rozantsev, J. Coord. Chem. 68, 1 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Schatz, S. Dommer, S.O.N. Thumann, B. Blumenröder, I. Hoffmann, Green Chem. 17, 3844 (2015)CrossRefGoogle Scholar
  18. 18.
    V. Polshettiwar, C. Len, A. Fihri, Coord. Chem. Rev. 253, 2599 (2009)CrossRefGoogle Scholar
  19. 19.
    A. Fihri, D. Luart, C. Len, A. Solhy, C. Chevrin, V. Polshettiwar, Dalton Trans. 40, 3116 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Monopoli, A. Afzal, C. di Franco, N. Ditaranto, N. Cioffi, A. Nacci, P. Cotugno, L. Torsi, J. Mol. Catal. A Chem. 386, 101 (2014)CrossRefGoogle Scholar
  21. 21.
    N. Marion, O. Navarro, J. Mei, E.D. Stevens, N.M. Scott, S.P. Nolan, J. Am. Chem. Soc. 128, 4101 (2006)CrossRefGoogle Scholar
  22. 22.
    N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 20, 3437 (1979)CrossRefGoogle Scholar
  23. 23.
    V. Montoya, J. Pons, V. Branchadell, J. Garciaantón, X. Solans, M. Font-Bardía, J. Ros, Organometallics 27, 1084 (2008)CrossRefGoogle Scholar
  24. 24.
    M. Guerrero, J. Pons, M. Font-Bardía, T. Calvet, J. Ros, Aust. J. Chem. 63, 958 (2010)CrossRefGoogle Scholar
  25. 25.
    J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 102, 1359 (2002)CrossRefGoogle Scholar
  26. 26.
    J.P. Corbet, G. Mignani, Chem. Rev. 106, 2651 (2006)CrossRefGoogle Scholar
  27. 27.
    S.I. Son, W.K. Lee, J. Choi, H.-J. Ha, Green Chem. 17, 3306 (2015)CrossRefGoogle Scholar
  28. 28.
    A. Das, D. Wang, M.C. Belhomme, K.J. Szabo, Org. Lett. 17, 4754 (2015)CrossRefGoogle Scholar
  29. 29.
    K. Hirano, M. Miura, Chem. Commun. 48, 10704 (2012)CrossRefGoogle Scholar
  30. 30.
    V.P. Mehta, E.V. Van der Eycken, Chem. Soc. Rev. 40, 4925 (2011)CrossRefGoogle Scholar
  31. 31.
    S.E. Allen, R.R. Walvoord, R. Padillasalinas, M.C. Kozlowski, Chem. Rev. 113, 6234 (2013)CrossRefGoogle Scholar
  32. 32.
    N. Hussain, P. Gogoi, V.K. Azhaganand, M.V. Shelke, M.R. Das, Catal. Sci. Technol. 5, 1251 (2015)CrossRefGoogle Scholar
  33. 33.
    M. Zhao, X. Zhao, P. Zheng, Y. Tian, J. Fluor. Chem. 194, 73 (2017)CrossRefGoogle Scholar
  34. 34.
    Y. Lin, M. Cai, Z. Fang, H. Zhao, Tetrahedron 72, 3335 (2016)CrossRefGoogle Scholar
  35. 35.
    P. Puthiaraj, P. Suresh, K. Pitchumani, Green Chem. 16, 2865 (2014)CrossRefGoogle Scholar
  36. 36.
    K. Inamoto, K. Nozawa, J. Kadokawa, Y. Kondo, Tetrahedron 68, 7794 (2012)CrossRefGoogle Scholar
  37. 37.
    P. Basnet, S. Thapa, D.A. Dickie, R. Giri, Chem. Commun. 52, 11072 (2016)CrossRefGoogle Scholar
  38. 38.
    Y.-H. Wang, M.-C. Xu, J. Liu, L.-J. Zhang, X.-M. Zhang, Tetrahedron 71, 9598 (2015)CrossRefGoogle Scholar
  39. 39.
    N. Kirai, Y. Yamamoto, Eur. J. Org. Chem. 2009, 1864 (2009)CrossRefGoogle Scholar
  40. 40.
    F. Hu, H. Zou, X. Zhao, Y. Mi, C. Luo, Y. Wang, CrystEngComm 15, 1068 (2013)CrossRefGoogle Scholar
  41. 41.
    F.-L. Hu, Y. Mi, Y.-Q. Gu, L.-G. Zhu, S.-L. Yang, H. Wei, J.-P. Lang, CrystEngComm 15, 9553 (2013)CrossRefGoogle Scholar
  42. 42.
    F.-L. Hu, S.-L. Wang, B.F. Abrahams, J.-P. Lang, CrystEngComm 17, 4903 (2015)CrossRefGoogle Scholar
  43. 43.
    F.-L. Hu, S.-L. Wang, B. Wu, H. Yu, F. Wang, J.-P. Lang, CrystEngComm 16, 6354 (2014)CrossRefGoogle Scholar
  44. 44.
    E.A. Lewis, W.B. Tolman, Chem. Rev. 104, 1047 (2004)CrossRefGoogle Scholar
  45. 45.
    J.-H. Yu, Z.-L. Lü, J.-Q. Xu, H.-Y. Bie, J. Liu, X. Zhang, New J. Chem. 28, 940 (2004)CrossRefGoogle Scholar
  46. 46.
    B.W. Skelton, A.F. Waters, A.H. White, Aust. J. Chem. 44, 1207 (1991)CrossRefGoogle Scholar
  47. 47.
    P.C. Healy, C. Pakawatchai, A.H. White, J. Chem. Soc. Dalton Trans. 12, 2531 (1985)CrossRefGoogle Scholar
  48. 48.
    B.A. Dar, S. Singh, N. Pandey, A.P. Singh, P. Sharma, A. Lazar, M. Sharma, R.A. Vishwakarma, B. Singh, Appl. Catal. A 470, 232 (2014)CrossRefGoogle Scholar
  49. 49.
    G. Cheng, M. Luo, Eur. J. Org. Chem. 2011, 2519 (2011)CrossRefGoogle Scholar
  50. 50.
    P.K. Raul, A. Mahanta, U. Bora, A.J. Thakur, V. Veer, Tetrahedron Lett. 56, 7069 (2015)CrossRefGoogle Scholar
  51. 51.
    G.I. Dzhardimalieva, I.E. Uflyand, J. Coord. Chem. 70, 1468 (2017)CrossRefGoogle Scholar
  52. 52.
    G.M. Sheldrick, SHELXS-97Program for Refinement of Crystal Structures (University of Göttingen, Göttingen, Germany, 1997)Google Scholar
  53. 53.
    G.M. Sheldrick, SHELXS-97Program for Solution of Crystal Structures (University of Göttingen, Göttingen, Germany, 1997)Google Scholar
  54. 54.
    J.-J. Ning, J.-F. Wang, Z.-G. Ren, D.J. Young, J.-P. Lang, Tetrahedron 71, 4000 (2015)CrossRefGoogle Scholar
  55. 55.
    Q. Li, L.-M. Zhang, J.-J. Bao, H.-X. Li, J.-B. Xie, J.-P. Lang, Appl. Organomet. Chem. 28, 861 (2014)CrossRefGoogle Scholar
  56. 56.
    S. Roy, M.J. Sarma, B. Kashyap, P. Phukan, Chem. Commun. 52, 1170 (2016)CrossRefGoogle Scholar
  57. 57.
    B. Agrahari, S. Layek, S. Kumari, Anuradha, R. Ganguly, D.D. Pathak, J. Mol. Struct. 1134, 85 (2017)CrossRefGoogle Scholar
  58. 58.
    B. Kaboudin, T. Haruki, T. Yokomatsu, Synthesis 1, 91 (2011)CrossRefGoogle Scholar
  59. 59.
    B. Kaboudin, Y. Abedi, T. Yokomatsu, Eur. J. Org. Chem. 2011, 6656 (2011)CrossRefGoogle Scholar
  60. 60.
    B. Kaboudin, R. Mostafalu, T. Yokomatsu, Green Chem. 15, 2266 (2013)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Guangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi University for NationalitiesNanningPeople’s Republic of China

Personalised recommendations