A comparative study in the prediction of thermal conductivity enhancement of nanofluids using ANN-MLP, ANN-RBF, ANFIS, and GMDH methods
- 39 Downloads
Abstract
In this work, four types of data mining methods, namely adaptive neuro-fuzzy inference system, artificial neural network—multilayer perceptron algorithm (ANN-MLP), artificial neural network—radial basis function algorithm (ANN-RBF), and group method of data handling (GMDH) have been used to predict the enhancement of the relative thermal conductivity of a wide range of nanofluids with different base fluids and nanoparticles. The total number of experimental data used in this work is 483 from 18 different nanofluids. The input parameters are thermal conductivity of base fluid and nanoparticles, volume fraction percent, the average size of nanoparticles, and temperature. Although the results showed that all four models are in relatively good agreement with experimental data, the ANFIS method is the best. The average absolute relative deviations (AARD%) between the experimental data and those of obtained using ANFIS, ANN-MLP, ANN-RBF, and GMDH methods were calculated as 2.7, 2.8, 4.2, and 4.3, respectively, for the test sets and as 1.1, 2.4, 3.9, and 4.5, respectively, for the training sets. Comparison between the predictions of the proposed ANN-MLP, ANN-RBF, ANFIS, and GMDH models and those predicted by traditional models, namely Maxwell and Bruggeman models showed that much better agreements can be obtained using the four models especially ANFIS model. Accordingly, the ANFIS method can able us to predict the relative thermal conductivity of new nanofluids in different conditions with good accuracy.
Keywords
Nanofluids Thermal conductivity Artificial neural network (ANN) Adaptive neuro-fuzzy inference system (ANFIS) Radial basis function (RBF) Group method of data handling (GMDH)Notes
Acknowledgements
This research was supported by the Research Council of University of Isfahan. The authors also thank Dr. Vahid Moosavi for his assistance and valuable comments on the used algorithms.
References
- 1.X.Q. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1–19 (2007)CrossRefGoogle Scholar
- 2.S. Chol, ASME Publ. Fed. 231, 99–106 (1995)Google Scholar
- 3.C. Kleinstreuer, Y. Feng, Nanoscale Res. Lett. 6, 1–13 (2011)Google Scholar
- 4.W. Yu, D.M. France, J.L. Routbort, S.U. Choi, Heat Transf. Eng. 29, 432–460 (2008)Google Scholar
- 5.W. Yu, S. Choi, J. Nanopart. Res. 6, 355–361 (2004)Google Scholar
- 6.W. Yu, S. Choi, J.Nanopart. Res. 5, 167–171 (2003)Google Scholar
- 7.Q.-Z. Xue, Phys. Lett. A 307, 313–317 (2003)Google Scholar
- 8.B.-X. Wang, L.-P. Zhou, X.-F. Peng, Int. J. Heat Mass Transf. 46, 2665–2672 (2003)Google Scholar
- 9.J. Maxwell, A Treatise on Electricity and Magnetism vol. 1, chap. 9 (Clarendon, Oxford, 1891)Google Scholar
- 10.R. Hamilton, O. Crosser, Ind. Eng. Chem. Fundam. 1, 187–191 (1962)Google Scholar
- 11.V.D. Bruggeman, Ann. Phys. 416, 636–664 (1935)Google Scholar
- 12.D.J. Jeffrey, Royal Soc. 355–367 (1973)Google Scholar
- 13.R. Davis, Int. J. Thermophys. 7, 609–620 (1986)Google Scholar
- 14.V. Vijayan, A. Ravikumar, Int. J. Comput. Appl. 95 (2014)Google Scholar
- 15.M.H. Esfe, H. Rostamian, D. Toghraie, W.-M. Yan, J. Therm. Anal. Calorim. 126, 643–648 (2016)Google Scholar
- 16.M.H. Esfe, M.R.H. Ahangar, D. Toghraie, M.H. Hajmohammad, H. Rostamian, H. Tourang, J. Therm. Anal. Calorim. 126, 837–843 (2016)Google Scholar
- 17.M. Bahiraei, M. Hangi, Mater. Chem. Phys. 181, 333–343 (2016)Google Scholar
- 18.B. Vaferi, F. Samimi, E. Pakgohar, D. Mowla, Powder Technol. 267, 1–10 (2014)Google Scholar
- 19.M.H. Esfe, S. Saedodin, M. Bahiraei, D. Toghraie, O. Mahian, S. Wongwises, J. Therm. Anal. Calorim. 118, 287–294 (2014)Google Scholar
- 20.H.H. Balla, S. Abdullah, W.M.F. WanMahmood, M.A. Razzaq, R. Zulkifli, K. Sopian, Res. Chem. Intermed. 39, 2801–2815 (2013)Google Scholar
- 21.S. Aminossadati, A. Kargar, B. Ghasemi, Int. J. Therm. Sci. 52, 102–111 (2012)Google Scholar
- 22.M. Mehrabi, M. Sharifpur, J.P. Meyer, Int. Commun. Heat Mass Transf. 39, 971–977 (2012)Google Scholar
- 23.A. Lotfizadeh, Commun. ACM 37, 77–85 (1994)Google Scholar
- 24.M.T. Hagan, H.B. Demuth, M.H. Beale, (University of Colorado Bookstore, Boulder, 2002Google Scholar
- 25.A.G. Ivakhnenko, Soviet Autom. Control 13, 43–55 (1968)Google Scholar
- 26.A.G. Ivakhnenko, IEEE Trans. Syst. Man Cybern. 1, 364–378 (1971)Google Scholar
- 27.S.J. Farlow, Am. Stat. 35, 210–215 (1981)Google Scholar
- 28.A.G. Ivakhnenko, G.A. Ivakhnenko, Pattern Recogn. Image Anal. 5, 527–535 (1995)Google Scholar
- 29.D.S. Broomhead, D. Lowe, Complex Syst. 2, 321–355 (1988)Google Scholar
- 30.L. Yu, K.K. Lai, S. Wang, Neurocomputing 71, 3295–3302 (2008)Google Scholar
- 31.S.A. Iliyas, M. Elshafei, M.A. Habib, A.A. Adeniran, Control Eng. Pract. 21, 962–970 (2013)Google Scholar
- 32.S. Chen, C.F.N. Cowan, P.M. Grant, IEEE Trans. Neural Netw. 2, 302–309 (1991)PubMedGoogle Scholar
- 33.M. Hojjat, S.G. Etemad, R. Bagheri, J. Thibault, Int. J. Heat Mass Transf. 54, 1017–1023 (2011)Google Scholar
- 34.M. Chandrasekar, S. Suresh, A.C. Bose, Exp. Therm. Fluid Sci. 34, 210–216 (2010)Google Scholar
- 35.K. Anoop, T. Sundararajan, S.K. Das, Int. J. Heat Mass Transf. 52, 2189–2195 (2009)Google Scholar
- 36.S. Murshed, K. Leong, C. Yang, Int. J. Therm. Sci. 47, 560–568 (2008)Google Scholar
- 37.W.-Q. Lu, Q.-M. Fan, Eng. Anal. Bound Elem. 32, 282–289 (2008)Google Scholar
- 38.D.-H. Yoo, K. Hong, H.-S. Yang, Thermochim. Acta 455, 66–69 (2007)Google Scholar
- 39.C.H. Li, G. Peterson, J. Appl. Phys. 101, 44312 (2007)Google Scholar
- 40.C.H. Li, G. Peterson, J. Appl. Phys. 99, 084314 (2006)Google Scholar
- 41.C.H. Chon, K.D. Kihm, S.P. Lee, S.U. Choi, Appl. Phys. Lett. 87, 3107 (2005)Google Scholar
- 42.D. Wen, Y. Ding, Int. J. Heat Mass Transf. 47, 5181–5188 (2004)Google Scholar
- 43.S.K. Das, N. Putra, P. Thiesen, W. Roetzel, J. Heat Transf. 125, 567–574 (2003)Google Scholar
- 44.H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, Q. Wu, J. Appl. Phys. 91, 4568–4572 (2002)Google Scholar
- 45.X. Wang, X. Xu, S.U.S. Choi, J. Thermophys. Heat Transf. 13, 474–480 (1999)Google Scholar
- 46.S. Lee, S.-S. Choi, S. Li, J. Eastman, J. Heat Transf. 121, 280–289 (1999)Google Scholar
- 47.D. Lee, J.-W. Kim, B.G. Kim, J. Phys. Chem. B 110, 4323–4328 (2006)PubMedGoogle Scholar
- 48.W. Duangthongsuk, S. Wongwises, Int. J. Heat Mass Transf. 53, 334–344 (2010)Google Scholar
- 49.A. Turgut, I. Tavman, M. Chirtoc, H. Schuchmann, C. Sauter, S. Tavman, Int. J. Thermophys. 30, 1213–1226 (2009)Google Scholar
- 50.W. Duangthongsuk, S. Wongwises, Exp. Therm. Fluid Sci. 33, 706–714 (2009)Google Scholar
- 51.H. Chen, S. Witharana, Y. Jin, C. Kim, Y. Ding, Particuology 7, 151–157 (2009)Google Scholar
- 52.D. Wen, Y. Ding, Int. J. Heat Fluid Flow 26, 855–864 (2005)Google Scholar
- 53.S. Murshed, K. Leong, C. Yang, Int. J. Therm. Sci. 44, 367–373 (2005)Google Scholar
- 54.S.W. Lee, S.D. Park, S. Kang, I.C. Bang, J.H. Kim, Int. J. Heat Mass Transf. 54, 433–438 (2011)Google Scholar
- 55.H.-Q. Xie, J.-C. Wang, T.-G. Xi, Y. Liu, Int. J. Thermophys. 23, 571–580 (2002)Google Scholar
- 56.M.-S. Liu, M.C.-C. Lin, C. Tsai, C.-C. Wang, Int. J. Heat Mass Transf. 49, 3028–3033 (2006)Google Scholar
- 57.Y. Xuan, Q. Li, Int. J. Heat Fluid Flow 21, 58–64 (2000)Google Scholar
- 58.H.U. Kang, S.H. Kim, J.M. Oh, Exp. Heat Transf. 19, 181–191 (2006)Google Scholar
- 59.H. Chen, Y. Ding, A. Lapkin, X. Fan, 11, 1513–1520 (2009)Google Scholar
- 60.H. Chen, Y. Ding, Y. He, C. Tan, Chem. Phys. Lett. 444, 333–337 (2007)Google Scholar
- 61.J. Garg, B. Poudel, M. Chiesa, J. Gordon, J. Ma, J. Wang, Z. Ren, Y. Kang, H. Ohtani, J. Nanda, J. Appl. Phys. 103, 074301 (2008)Google Scholar
- 62.J.A. Eastman, S. Choi, S. Li, W. Yu, L. Thompson, Appl. Phys. Lett. 78, 718–720 (2001)Google Scholar
- 63.T.-K. Hong, H.-S. Yang, C. Choi, J. Appl. Phys. 97, 064311 (2005)Google Scholar
- 64.J.C. Maxwell, (Clarendon press, 1881)Google Scholar