Advertisement

Journal of the Iranian Chemical Society

, Volume 16, Issue 11, pp 2473–2478 | Cite as

Photoluminescence and semiconductive properties of a 4f–5d compound

  • Wei-Sheng Lin
  • Wen-Tong ChenEmail author
Original Paper
  • 38 Downloads

Abstract

A novel 4f–5d compound [Ho(H2O)2(μ-IA)3Hg3Br6]n (1, HIA = isonicotinic acid) was prepared. It is characterized by single-crystal X-ray diffraction. The title compound crystallizes in the space group P21/n of the monoclinic system. The holmium ion is coordinated by six oxygen atoms to yield a slightly distorted tetragonal antiprism configuration. Three crystallographically independent mercury ions exhibit two different coordination environments, i.e., tetrahedron geometry and square pyramidal configuration. In the title compound, there are two types of one-dimensional (1D) chains, namely Hg–Br chains and Ho–IA chains. Both chains are interconnected by the μ3-bridging isonicotinic acid ligands to form a three-dimensional (3D) frame structure. Photoluminescence from solid samples showed that the title compound could emit up-conversion red fluorescence, and its half-peak width was about 14 nm. The emission peak comes from its characteristic emission of 5F5 → 5I8 of Ho3+. The CIE color coordinates of the title compound are (0.693, 0.307). The title compound displays a broad semiconductor gap being of 2.47 eV, as discovered by the solid-state diffuse reflection.

Graphic abstract

A novel 4f–5d compound has been prepared. It features a 3D framework structure. It displays a red up-conversion photoluminescence emission band. Diffuse reflection spectrum with solid-state sample shows that it possesses a wide optical band gap of 2.47 eV.

Keywords

Characteristic emission CIE Holmium Semiconductor Up-conversion 

Notes

Acknowledgements

We gratefully thank the financial support of Jiangxi Provincial Department of Education’s Item of Science and Technology (GJJ170637) and NSF of Fujian Province (2018J01447).

References

  1. 1.
    A. Worrell, D. Sun, J. Mayans, C. Lampropoulos, A. Escuer, T.C. Stamatatos, Inorg. Chem. 57, 13944 (2018)CrossRefPubMedGoogle Scholar
  2. 2.
    T.-F. Zheng, S.-L. Yao, C. Cao, S.-J. Liu, H.-K. Hu, T. Zhang, H.-P. Huang, J.-S. Liao, J.-L. Chen, H.-R. Wen, New J. Chem. 41, 8598 (2017)CrossRefGoogle Scholar
  3. 3.
    . S. Chorazy, M. Wyczesany, B. Sieklucka, Molecules 22, 1902/1 (2017)Google Scholar
  4. 4.
    T. Gorai, U. Maitra, ACS Sensors 1, 934 (2016)CrossRefGoogle Scholar
  5. 5.
    M.B. Coban, A. Amjad, M. Aygun, H. Kara, Inorg. Chim. Acta 455, 25 (2017)CrossRefGoogle Scholar
  6. 6.
    P.R. Matthes, J. Eyley, J.H. Klein, A. Kuzmanoski, C. Lambert, C. Feldmann, K. Muller-Buschbaum, Eur. J. Inorg. Chem. 5, 826 (2015)CrossRefGoogle Scholar
  7. 7.
    . M. Viciano-Chumillas, F. Koprowiak, I. Mutikainen, W. Wernsdorfer, T. Mallah, H. Bolvin, Phys. Rev. B 96, 214427/1 (2017)Google Scholar
  8. 8.
    T. Morikawa, S. Harada, A. Nishida, J. Org. Chem. 80, 8859 (2015)CrossRefPubMedGoogle Scholar
  9. 9.
    Rigaku (2002), CrystalClear V.1.35, Rigaku Corporation, Japan, TokyoGoogle Scholar
  10. 10.
    Siemens, SHELXTL (Siemens Energy & Automation Inc., Madison, 1994)Google Scholar
  11. 11.
    J. Wu, X.-L. Li, L. Zhao, M. Guo, J. Tang, Inorg. Chem. 56, 4104 (2017)CrossRefPubMedGoogle Scholar
  12. 12.
    S.K. Gupta, S.K. Langley, K. Sharma, K.S. Murray, R. Murugavel, Inorg. Chem. 56, 3946 (2017)CrossRefPubMedGoogle Scholar
  13. 13.
    H.R. Khavasi, N. Rahimi, Cryst. Growth Des. 17, 834 (2017)CrossRefGoogle Scholar
  14. 14.
    S.J. Sabounchei, M. Ahmadianpoor, A. Hashemi, F. Mohsenzadeh, R.W. Gable, Inorg. Chim. Acta 458, 77 (2017)CrossRefGoogle Scholar
  15. 15.
    E.W. Barrera, M.C. Pujol, J.J. Carvajal, X. Mateos, R. Sole, J. Massons, A. Speghini, M. Bettinelli, C. Cascales, M. Aguilo, Phys. Chem. Chem. Phys. 16, 1679 (2014)CrossRefPubMedGoogle Scholar
  16. 16.
    R. Krishnan, J. Thirumalai, New J. Chem. 38, 3480 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Zhang, B. Ji, G. Chen, Z. Hua, Inorg. Chem. 57, 5038 (2018)CrossRefPubMedGoogle Scholar
  18. 18.
    J. Zhang, Z. Hua, J. Lumin. 201, 217 (2018)CrossRefGoogle Scholar
  19. 19.
    F.Q. Huang, K. Mitchell, J.A. Ibers, Inorg. Chem. 40, 5123 (2001)CrossRefPubMedGoogle Scholar
  20. 20.
    P. Dürichen, W. Bensch, Eur. J. Solid State Inorg. Chem. 34, 1187 (1997)Google Scholar
  21. 21.
    R. Tillinski, C. Rumpf, C. Näther, P. Duerichen, I. Jess, S.A. Schunk, W. Bensch, Z. Anorg, Allg. Chem. 624, 1285 (1998)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of Ecological and Resources Engineering, Fujian Key laboratory of Eco-Industrial Green TechnologyWuyi UniversityWuyishanChina
  2. 2.Institute of Applied ChemistryJinggangshan UniversityJi’anChina

Personalised recommendations