Molecular engineering and synthesis of symmetric metal-free organic sensitizers with A-π-D-π-A architecture for DSSC applications: the effect of bridge unit

  • Luping LyuEmail author
  • Ping Tang
  • Guotong Tong
  • Liang Han
Original Paper


Herein, we report the design and synthesis of six symmetric metal-free organic sensitizers (llyu1a, llyu1b, llyu1c, llyu2a, llyu2b, and llyu2c) based on fluorene or dimethyl fluorene donors core carrying double acceptors. All these dyes were characterized using UV–Vis, ESI-MS, and 1HNMR. To study the influence of π-bridges on total solar-to-electric conversion efficiency (%η) for DSSCs, three different π-bridges thiophene, furane, or benzene were introduced into the sensitizers. Their device performances were studied and showed a distinctive difference in efficiency with a maximum of PCE of 2.35% (Jsc = 5.63 mA cm − 2, VOC = 0.60 V and FF = 70.00%) for dye llyu1a. Density functional theory (DFT) and time-dependent density functional theory calculations were used to probe the relationship between chemical structure, photophysical, and photoelectrochemical properties. DFT studies showed that the dihedral angle between thiophene and donor is 26.6°, indicating that the dyes bearing thiophene π-bridge possess more efficient photoexcitation compared to dyes bearing benzene π-bridge (36.6° for both llyu2c and llyu1c) and less aggregation than dyes bearing furane π-bridge (0° for llyu1b and llyu2b). This new finding of influence of π-bridges on total solar-to-electric conversion efficiency would open the door for the molecular engineering of better light harvesting and more efficient metal-free organic sensitizers for DSSCs.


DSSCs Symmetric organic dyes Fluorene Double π-acceptors 



We gratefully acknowledge the financial supported by the funding of National Natural Science Foundation of China (21406202), Hangzhou Agricultural Scientific Research Project (20160432B25, 20180432B35), Zhejiang Public Welfare Technology Research Program (LGN19C200014), College Students in Zhejiang Province Sciences and Technology Innovation Activities (No. 2017R452002), and China Scholarship Council (File No. 201708330572).


  1. 1.
    B. O’Regan, M. Grätzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  2. 2.
    M. Dadkhah, M. Salavati-Niasari, Mat. Sci. Semicond. Process 20, 41 (2014)CrossRefGoogle Scholar
  3. 3.
    H. Teymourinia, M. Salavati-Niasari, O. Amiri, M. Farangi, J. Mol. Liq. 251, 267 (2018)CrossRefGoogle Scholar
  4. 4.
    O. Amiri, M. Salavati-Niasari, N. Mir, F. Beshkar, F. Ansari, Renew. Energy 125, 590 (2018)CrossRefGoogle Scholar
  5. 5.
    M.S. Morassaei, A. Salehabadi, A. Akbari, S.H. Tavassoli, M. Salavati-Niasari, J. Alloy Compd. 769, 732 (2018)CrossRefGoogle Scholar
  6. 6.
    N. Mir, M. Salavati-Niasari, F. Davar, Chem. Eng. J. 181–182, 779 (2012)CrossRefGoogle Scholar
  7. 7.
    N. Mir, M. Salavati-Niasari, Mater. Res. Bull. 48, 1660 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Noshin Mir, Salavati-Niasari. Sol. Energy 86, 3397 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Grätzel, Acc. Chem. Res. 42, 1788 (2009)CrossRefGoogle Scholar
  10. 10.
    R. Rattanawan, V. Promarak, T. Sudyoadsuk, S. Namuangrukc, N. Kungwan, S. Yuan, S. Jungsuttiwong, J. Photochem. Photobiol. A Chem. 322, 16 (2016)CrossRefGoogle Scholar
  11. 11.
    D. Pugliese, A. Lamberti, F. Bella, A. Sacco, S. Bianco, E. Tressoa, Org. Electron. 15, 3715 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Yella, H.W. Lee, H.N. Tsao, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Science 334, 629 (2011)CrossRefGoogle Scholar
  13. 13.
    B. Nagarajan, S. Kushwaha, R. Elumalai, S. Mandal, K. Ramanujam, D. Raghavachari, J. Mater. Chem. A 5, 10289 (2017)CrossRefGoogle Scholar
  14. 14.
    S. Chaurasia, J.T. Lin, Chem. Rec. 16, 1311 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Mahmood, Sol. Energy 123, 127 (2016)CrossRefGoogle Scholar
  16. 16.
    B. Phillip, E.M. Louis, P. Adithya, N.I. Hammer, J.H. Delcamp, Synth. Met. 222, 66 (2015)Google Scholar
  17. 17.
    W.I. Hung, Y.Y. Liao, T.H. Lee, Y.C. Ting, J.S. Ni, W.S. Kao, J.T. Lin, Chem. Commun. 1, 2152 (2015)CrossRefGoogle Scholar
  18. 18.
    Y.H. Numata, S. Zhang, X. Yang, L. Han, Chem. Lett. 42, 1328 (2013)CrossRefGoogle Scholar
  19. 19.
    Y. Xie, Y. Tang, W. Wu, Y. Wang, J. Liu, X. Li, H. Tian, W.H. Zhu, J. Am. Chem. Soc. 137, 14055 (2015)CrossRefGoogle Scholar
  20. 20.
    W. Zhang, Y. Wu, H. Zhu, Q. Chai, J. Liu, H. Li, X. Song, W. Zhu, ACS Appl. Mater. Interfaces 7, 26802 (2015)CrossRefGoogle Scholar
  21. 21.
    S.G. Chen, H.L. Jia, X.H. Ju, X. Fang, L. Wang, H. Meie, Org. Lett. 13, 1610 (2011)CrossRefGoogle Scholar
  22. 22.
    X. Ren, S. Jiang, M. Cha, G. Zhou, Z.S. Wang, Chem. Mater. 24, 3493 (2012)CrossRefGoogle Scholar
  23. 23.
    Y.S. Yang, H.D. Kim, J.H. Ryu, K.K. Kim, S.S. Park, K.S. Ahn, J.H. Kim, Synth. Met. 161, 850 (2011)CrossRefGoogle Scholar
  24. 24.
    Y. Hong, J.Y. Liao, J. Fu, X. Zang, D.B. Kuang, L. Wang, H. Meier, C.Y. Su, Dyes Pigments 94, 481 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Norberto, C. Bianca, A. Alessandro, Eur. J. Org. Chem. 32, 7069 (2014)Google Scholar
  26. 26.
    D. El-Sherbiny, H. Cheema, F. El-Essawy, A. Abdel-Megied, A. El-Shafei, Dyes Pigments 115, 81 (2015)CrossRefGoogle Scholar
  27. 27.
    X.F. Zang, T.L. Zhang, Z.S. Huang, Z. Iqbal, D.B. Kuang, L. Wang, H. Meier, Dyes Pigments 104, 89 (2014)CrossRefGoogle Scholar
  28. 28.
    Y.P. Hong, Z. Iqbal, X.L. Yin, D. Cao, Tetrahedron 70, 6296 (2014)CrossRefGoogle Scholar
  29. 29.
    L. Agostina, D. Luisa, A. Giuseppina, Dyes Pigments 130, 79 (2016)CrossRefGoogle Scholar
  30. 30.
    P. Bomben, K. Theriault, C. Berlinguette, Eur. J. Inorg. Chem. 2011, 1806 (2011)CrossRefGoogle Scholar
  31. 31.
    J. Bisquert, Phys. Chem. Chem. Phys. 5, 5360 (2003)CrossRefGoogle Scholar
  32. 32.
    J. Tang, J. Hua, W. Wu, J. Li, Z. Jin, Y. Long, H. Tian, Energy Environ. Sci. 3, 1736 (2010)CrossRefGoogle Scholar
  33. 33.
    K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, New J. Chem. 27, 783 (2003)CrossRefGoogle Scholar
  34. 34.
    K. Funabiki, H. Mase, Y. Saito, A. Otsuka, A. Hibino, N. Tanaka, H. Miura, Y. Himori, T. Yoshida, Y. Kubota, M. Matsu, Org. Lett. 14, 1246 (2012)CrossRefGoogle Scholar
  35. 35.
    F. Francisco, B. Juan, G. Germà, G. Boschloo, A. Hagfeldt, Sol. Energy Mater. Sol. Cells 87, 117 (2005)CrossRefGoogle Scholar
  36. 36.
    H. Cheema, A. Islam, R. Younts, B. Gautam, I. Bedja, R.K. Gupta, L. Han, K. Gundogdu, A. El-Shafei, Phys. Chem. Chem. Phys. 16, 27078 (2014)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  • Luping Lyu
    • 1
    Email author
  • Ping Tang
    • 1
  • Guotong Tong
    • 1
  • Liang Han
    • 2
  1. 1.Linjiang CollegeHangzhou Vocational and Technical CollegeHangzhouPeople’s Republic of China
  2. 2.College of Chemical EngineeringZhejiang University of TechnologyHangzhouPeople’s Republic of China

Personalised recommendations