Versatile catalysis of “natural extract”: oxidation of sulfides and alcohols and ipso-hydroxylation of arylboronic acids

  • Apurba Dutta
  • Abdul Aziz Ali
  • Diganta SarmaEmail author
Original Paper


In the present work, we have described the versatile applications of naturally available inexpensive citrous lemon juice as biocatalyst for controlled oxidation of sulfides and alcohols and ipso-hydroxylation of arylboronic acids using 30% H2O2 as a green oxidant. A series of structurally divergent sulfides and benzyl alcohols were oxidized to their corresponding sulfoxides and aldehydes, respectively, with good-to-excellent yields. Similarly, aryl and heteroaryl boronic acids were rapidly, often within minutes, transformed to their corresponding phenols at room temperature.

Graphic abstract


Green chemistry Biocatalyst Lemon juice Oxidation Ipso-hydroxylation Hydrogen peroxide 



D.S. is thankful to DST, New Delhi, India, for a research Grant [No. EMR/2016/002345]. The authors acknowledge the Department of Science and Technology for financial assistance under DST-FIST program and UGC, New Delhi, for Special Assistance Programme (UGC-SAP) to the Department of Chemistry, Dibrugarh University. We acknowledge Dr. Arvind Kumar, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India, and Dr. Ankur Bordoloi Scientist, Nano catalysis, Catalytic Conversion and Process Division CSIR–Indian institute of petroleum, Mohkampur, Dehradun-248005, India, for recording the NMR spectra.


  1. 1.
    P. Anastas, J. Warner, Green Chemistry: Theory and Practice (Oxford University Press, New York, 1998)Google Scholar
  2. 2.
    P. Anastas, N. Eghbali, Chem. Soc. Rev. 39, 301–312 (2012)CrossRefGoogle Scholar
  3. 3.
    R.A. Sheldon, Green Chem. 7, 267–278 (2005)CrossRefGoogle Scholar
  4. 4.
    A. Rostami, J. Akradi, Tetrahedron Lett. 51, 3501–3503 (2010)CrossRefGoogle Scholar
  5. 5.
    G.E. O’Mahony, P. Kelly, S.E. Lawrence, A.R. Maguire, Arkivoc, 1–110 (2011)Google Scholar
  6. 6.
    E. Wojaczynska, J. Wojaczynski, Chem. Rev. 110, 4303–4356 (2010)CrossRefGoogle Scholar
  7. 7.
    K.P. Bryliakov, E.P. Talsi, Curr. Org. Chem. 12, 386–404 (2008)CrossRefGoogle Scholar
  8. 8.
    M.M. Khodaei, K. Bahrami, M.S. Arabi, J. Sulfur Chem. 31, 83–88 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Rostami, F. Hassanian, A.G. Choghamarani, S. Saadati, Phosphorus Sulfur Silicon Relat. Elem. 188, 833–838 (2013)CrossRefGoogle Scholar
  10. 10.
    K.R. Reddy, C.V. Rajasekhar, A. Ravindra, Synth. Commun. 36, 3761–3766 (2006)CrossRefGoogle Scholar
  11. 11.
    M. Mokhtary, M. Qandalee, M.R. Niaki, J. Chem. 9, 863–868 (2012)Google Scholar
  12. 12.
    H. Jafari, A. Rostami, F.A. Jangi, A.G. Choghamarani, Synth. Commun. 42, 3150–3156 (2012)CrossRefGoogle Scholar
  13. 13.
    R.B. Wagh, J.M. Nagarkar, Catal. Lett. 147, 181–187 (2017)CrossRefGoogle Scholar
  14. 14.
    H. Golchoubian, F. Hosseinpoor, Molecules 12, 304–311 (2007)CrossRefGoogle Scholar
  15. 15.
    X. Liu, Q. Xia, Y. Zhang, C. Chen, W. Chen, J. Org. Chem. 78, 8531–8536 (2013)CrossRefGoogle Scholar
  16. 16.
    L. Wang, S. Shang, G. Li, L. Ren, Y. Lv, S. Gao, J. Org. Chem. 81, 2189–2193 (2016)CrossRefGoogle Scholar
  17. 17.
    H. Veisi, S. Hemmati, M. Qomi, Tetrahedron Lett. 58, 4191–4196 (2017)CrossRefGoogle Scholar
  18. 18.
    R.A. Sheldon, J.K. Kochi, Metal-Catalyzed Oxidations of Organic Compounds (Academic, New York, 1981)Google Scholar
  19. 19.
    S.V. Ley, A. Madfin, in Comprehensive Organic Synthesis, eds. by B.M. Trost, I. Fleming, S.V. Ley (Pergamon, Oxford, 1991), vol. 7, pp. 251–289Google Scholar
  20. 20.
    B. Karimi, F.B. Rostami, M. Khorasani, D. Elhamifar, H. Vali, Tetrahedron 70, 6114–6119 (2014)CrossRefGoogle Scholar
  21. 21.
    J.U. Ahmad, M.T. Raisanen, M. Leskelä, T. Repo, Appl. Catal. A 411, 180–187 (2012)CrossRefGoogle Scholar
  22. 22.
    X.T. Zhou, H.B. Ji, S.G. Liu, Tetrahedron Lett. 54, 3882–3885 (2013)CrossRefGoogle Scholar
  23. 23.
    N. Noshiranzadeh, R. Bikas, K. Ślepokura, M. Mayeli, T. Lis, Inorg. Chim. Acta 421, 176–182 (2014)CrossRefGoogle Scholar
  24. 24.
    J.H.P. Tyman, Synthetic and Natural Phenols (Elsevier, New York, 1996)Google Scholar
  25. 25.
    Z. Rappoport, The Chemistry of Phenols (Wiley, Weinheim, 2003)CrossRefGoogle Scholar
  26. 26.
    A.D. Ainley, F. Challenger, J. Chem. Soc. 2171–2180 (1930)Google Scholar
  27. 27.
    H.G. Kuivila, J. Am. Chem. Soc. 76, 870–874 (1954)CrossRefGoogle Scholar
  28. 28.
    J. Simon, S. Salzbrunn, G.K. Surya Prakash, N.A. Petasis, G.A. Olah, J. Org. Chem. 66, 633–634 (2001)CrossRefGoogle Scholar
  29. 29.
    J. Xu, X. Wang, C. Shao, D. Su, G. Cheng, Y. Hu, Org. Lett. 12, 1964–1967 (2010)CrossRefGoogle Scholar
  30. 30.
    C. Zhu, R. Wang, J.R. Falck, Org. Lett. 14, 3494–3497 (2012)CrossRefGoogle Scholar
  31. 31.
    I. Saikia, M. Hazarika, N. Hussian, M.R. Das, C. Tamuly, Tetrahedron Lett. 58, 4255–4259 (2017)CrossRefGoogle Scholar
  32. 32.
    R.H. Vekariya, H.D. Patel, Arkivoc 1, 136–159 (2015)Google Scholar
  33. 33.
    R.H. Vekariya, H.D. Patel, RSC Adv. 5, 49006–49030 (2015)CrossRefGoogle Scholar
  34. 34.
    J.V. Madhav, V.T. Reddy, P.N. Reddy, M.N. Reddy, S. Kuarm, P.A. Crooks, B. Rajitha, J. Mol. Catal. A: Chem. 304, 85–87 (2009)CrossRefGoogle Scholar
  35. 35.
    A. Rajack, K. Yuvaraju, C. Praveen, Y.L.M. Murthy, J. Mol. Catal. A: Chem. 370, 197–204 (2013)CrossRefGoogle Scholar
  36. 36.
    P.R. Boruah, A.A. Ali, M. Chetia, B. Saikia, D. Sarma, Chem. Commun. 51, 11489–11492 (2015)CrossRefGoogle Scholar
  37. 37.
    P.R. Boruah, A.A. Ali, B. Saikia, D. Sarma, Green Chem. 17, 1442–1445 (2015)CrossRefGoogle Scholar
  38. 38.
    M. Konwar, A.A. Ali, M. Chetia, P.J. Saikia, N.D. Khupse, D. Sarma, ChemistrySelect 1, 6016–6019 (2016)CrossRefGoogle Scholar
  39. 39.
    E. Ramesh, R. Raghunathan, Synth. Commun. 39, 613–625 (2009)CrossRefGoogle Scholar
  40. 40.
    D. Habibi, O. Marvi, Arkivoc 13, 8–15 (2006)Google Scholar
  41. 41.
    Y. Riadi, R. Mamouni, R. Azzalou, R. Boulahjar, Y. Abrouki, M.E. Haddad, S. Routier, G. Guillaumet, S. Lazar, Tetrahedron Lett. 51, 6715–6717 (2010)CrossRefGoogle Scholar
  42. 42.
    M.B. Deshmukh, S.S. Patil, S.D. Jadhav, P.B. Pawar, Synth. Commun. 42, 1177–1183 (2012)CrossRefGoogle Scholar
  43. 43.
    S. Patil, S.D. Jadhav, M.B. Deshmuk, Arch. Appl. Sci. Res. 3, 203–208 (2011)Google Scholar
  44. 44.
    S. Patil, S.D. Jadha, S. Mane, Int. J. Org. Chem. 1, 125–131 (2011)CrossRefGoogle Scholar
  45. 45.
    A.M. Fonseca, F.J. Monte, M.C.F. de Oliveira, M.C.M. de Mattos, G.A. Cordell, R. Braz-Filho, T.L.G. Lemos, J. Mol. Catal. B Enzym. 57, 78–82 (2009)CrossRefGoogle Scholar
  46. 46.
    K. Mote, S. Pore, G. Rashinkar, S. Kambale, A. Kumbhar, R. Salunkhe, Arch. Appl. Sci. Res. 2, 74–80 (2010)Google Scholar
  47. 47.
    S. Pore, G. Rashimkar, K. Mote, R. Salunkhe, Chem. Biodivers. 7, 1796–1800 (2010)CrossRefGoogle Scholar
  48. 48.
    R. Pal, Int. J. Chem. Appl. 2, 26–40 (2013)Google Scholar
  49. 49.
    R.H. Vekariya, K.D. Patel, H.D. Patel, Res. Chem. Intermed. 42, 7559–7579 (2016)CrossRefGoogle Scholar
  50. 50.
    S. Patil, S.D. Jadhav, U.P. Patil, Arch. Appl. Sci. Res. 4, 1074–1107 (2012)Google Scholar
  51. 51.
    B. Karimi, D. Zareyee, J. Iran. Chem. Soc. 5, 103–107 (2008)CrossRefGoogle Scholar
  52. 52.
    S. Velusamy, V.A. Kumar, R. Saini, T. Punniyamurthy, Tetrahedron Lett. 46, 3819–3822 (2005)CrossRefGoogle Scholar
  53. 53.
    Y.B. Huang, W.B. Yi, C. Cai, J. Fluor. Chem. 132, 554–557 (2011)CrossRefGoogle Scholar
  54. 54.
    S. Hussain, S.K. Bharadwaj, R. Pandey, M.K. Chaudhuri, Eur. J. Chem. 42, 3319–3322 (2009)Google Scholar
  55. 55.
    M. Azizi, A. Maleki, F. Hakimpoor, R. Ghalavand, A. Garavand, Catal. Lett. 147, 2173–2177 (2017)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of ChemistryDibrugarh UniversityDibrugarhIndia

Personalised recommendations