A new method for the speciation of arsenic species in water, seafood and cigarette samples using an eggshell membrane

  • Luana Bastos Santos
  • Djalma Menezes de Oliveira
  • Alexilda Oliveira de Souza
  • Valfredo Azevedo LemosEmail author
Original Paper


This work is based on the application of the eggshell membrane (ESM) of fresh chicken as a sorbent in a solid phase extraction procedure for arsenic speciation with detection by electrothermal atomic absorption spectrometry. The ESM can adsorb several heavy metal ions from a dilute aqueous solution with high affinity and short contact time, depending on pH and ionic characteristics. It thusly becomes a promising candidate as a solid adsorbent in extraction systems. The procedure is based on the solid phase extraction of the complex formed by As(III) with ammonium pyrrolidine dithiocarbamate (APDC). Solutions of As(III) were percolated through the eggshell membrane-filled minicolumn (ESM). Then, the analyte contained in the sorbent was desorbed by a 4.0 mol L−1 HNO3/ethanol solution (2:3). The influence of variables such as eluent, sample volume, pH effect, APDC volume, eluent volume, atomization, pyrolysis temperature, and sample flow was studied. Under optimized conditions, the method presented a limit of detection and enrichment factor of 0.01 μg L−1 and 17, respectively. Arsenic speciation was also tested because As(V) does not react with APDC, but is retained by ESM. Thus, the determination of total arsenic and As(V) allows the determination of both species. The procedure was applied to the determination of arsenic species in water, seafood, and cigarette samples.


Arsenic Chicken eggshell membrane Solid phase extraction Speciation 



This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The authors also acknowledge the financial support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (311419/2018-6 and 461656/2014-0) and the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB). The authors also thank Dr Luis Nieto González, of the State University of Southwest of Bahia, for the photographs of ESM.


  1. 1.
    Y. Zhang, W. Wang, L. Li, Y. Huang, J. Cao, Eggshell membrane-based solid-phase extraction combined with hydride generation atomic fluorescence spectrometry for trace arsenic (V) in environmental water samples. Talanta 80(5), 1907–1912 (2010)CrossRefGoogle Scholar
  2. 2.
    M. Lin, C. Liao, Assessing the risks on human health associated with inorganic arsenic intake from groundwater-cultured milkfish in southwestern Taiwan. Food Chem. Toxicol. 46(2), 701–709 (2008)CrossRefGoogle Scholar
  3. 3.
    A.V. Zmozinski, T. Llorente-Mirandes, J.F. López-Sánchez, M.M. da Silva, Establishment of a method for determination of arsenic species in seafood by LC–ICP-MS. Food Chem. 173, 1073–1082 (2015)CrossRefGoogle Scholar
  4. 4.
    S.C. Wilson, P.V. Lockwood, P.M. Ashley, M. Tighe, The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environ. Pollut. 158(5), 1169–1181 (2010)CrossRefGoogle Scholar
  5. 5.
    A. Masotti, L. Da Sacco, G.F. Bottazzo, E. Sturchio, Risk assessment of inorganic arsenic pollution on human health. Environ. Pollut. 157(6), 1771–1772 (2009)CrossRefGoogle Scholar
  6. 6.
    P.L. Smedley, D. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17(5), 517–568 (2002)CrossRefGoogle Scholar
  7. 7.
    R. Singh, S. Singh, P. Parihar, V.P. Singh, S.M. Prasad, Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol. Environ. Saf. 112, 247–270 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Borak, H.D. Hosgood, Seafood arsenic: implications for human risk assessment. Regul. Toxicol. Pharmacol. 47(2), 204–212 (2007)CrossRefGoogle Scholar
  9. 9.
    A.N. Anthemidis, E.K. Martavaltzoglou, Determination of arsenic (III) by flow injection solid phase extraction coupled with on-line hydride generation atomic absorption spectrometry using a PTFE turnings-packed micro-column. Anal. Chim. Acta 573, 413–418 (2006)CrossRefGoogle Scholar
  10. 10.
    J. Ali, M. Tuzen, T.G. Kazi, Determination of arsenic in water samples by using a green hydrophobic–hydrophilic switchable liquid–solid dispersive microextraction method. Water Air Soil Pollut. 228(1), 34 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Damirchi, T. Heidari, Evaluation of digital camera as a portable colorimetric sensor for low-cost determination of inorganic arsenic (III) in industrial wastewaters by chemical hydride generation assisted-Fe(III)-1, 10-phenanthroline as a green color agent. J. Iran. Chem. Soc. 15(11), 2549–2557 (2018)CrossRefGoogle Scholar
  12. 12.
    O.D. Uluozlu, M. Tuzen, D. Mendil, M. Soylak, Determination of As(III) and As(V) species in some natural water and food samples by solid-phase extraction on Streptococcus pyogenes immobilized on Sepabeads SP 70 and hydride generation atomic absorption spectrometry. Food Chem. Toxicol. 48(5), 1393–1398 (2010)CrossRefGoogle Scholar
  13. 13.
    H.I. Afridi, F.N. Talpur, T.G. Kazi, D. Brabazon, Effect of trace and toxic elements of different brands of cigarettes on the essential elemental status of Irish referent and diabetic mellitus consumers. Biol. Trace Elem. Res. 167(2), 209–224 (2015)CrossRefGoogle Scholar
  14. 14.
    A.-M. Zou, X.-W. Chen, M.-L. Chen, J.-H. Wang, Sequential injection reductive bio-sorption of Cr(VI) on the surface of egg-shell membrane and chromium speciation with detection by electrothermal atomic absorption spectrometry. J. Anal. At. Spectrom. 23(3), 412–415 (2008)CrossRefGoogle Scholar
  15. 15.
    K. Anezaki, I. Nukatsuka, K. Ohzeki, Determination of Arsenic(III) and total Arsenic(III, V) in water samples by resin suspension graphite furnace atomic absorption specctrometry. Anal. Sci. 15(9), 829–834 (1999)CrossRefGoogle Scholar
  16. 16.
    P. Liang, L. Peng, P. Yan, Speciation of As(III) and As(V) in water samples by dispersive liquid–liquid microextraction separation and determination by graphite furnace atomic absorption spectrometry. Microchim. Acta 166(1), 47–52 (2009)CrossRefGoogle Scholar
  17. 17.
    Naeemullah, M. Tuzen, T.G. Kazi, A new portable micropipette tip-syringe based solid phase microextraction for the determination of vanadium species in water and food samples. J. Ind. Eng. Chem. 57, 188–192 (2018)CrossRefGoogle Scholar
  18. 18.
    M. Roushani, Z. Saedi, F. Hamdi, H.R. Rajabi, Application of ion-imprinted polymer synthesized by precipitation polymerization as an efficient and selective sorbent for separation and pre-concentration of chromium ions from some real samples. J. Iran. Chem. Soc. 15(10), 2241–2249 (2018)CrossRefGoogle Scholar
  19. 19.
    J.S. Fritz, M. Macka, Solid-phase trapping of solutes for further chromatographic or electrophoretic analysis. J. Chromatogr. A 902(1), 137–166 (2000)CrossRefGoogle Scholar
  20. 20.
    M. Behbahani, P.G. Hassanlou, M.M. Amini, F. Omidi, A. Esrafili, M. Farzadkia, A. Bagheri, Application of solvent-assisted dispersive solid phase extraction as a new, fast, simple and reliable preconcentration and trace detection of lead and cadmium ions in fruit and water samples. Food Chem. 187, 82–88 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Baláž, Eggshell membrane biomaterial as a platform for applications in materials science. Acta Biomater. 10(9), 3827–3843 (2014)CrossRefGoogle Scholar
  22. 22.
    F.G. Torres, O.P. Troncoso, F. Piaggio, A. Hijar, Structure-property relationships of a biopolymer network: the eggshell membrane. Acta Biomater. 6(9), 3687–3693 (2010)CrossRefGoogle Scholar
  23. 23.
    A. Mittal, M. Teotia, R. Soni, J. Mittal, Applications of egg shell and egg shell membrane as adsorbents: a review. J. Mol. Liq. 223, 376–387 (2016)CrossRefGoogle Scholar
  24. 24.
    J.L. Arias, M.S. Fernandez, J.E. Dennis, A.I. Caplan, Collagens of the chicken eggshell membranes. Connect. Tissue Res. 26(1–2), 37–45 (1991)CrossRefGoogle Scholar
  25. 25.
    T. Nakano, N. Ikawa, L. Ozimek, Chemical composition of chicken eggshell and shell membranes. Poult. Sci. 82(3), 510–514 (2003)CrossRefGoogle Scholar
  26. 26.
    D. Yang, L. Qi, J. Ma, Eggshell membrane templating of hierarchically ordered macroporous networks composed of TiO2 tubes. Adv. Mater. (Weinheim, Ger.) 14(21), 1543–1546 (2002)CrossRefGoogle Scholar
  27. 27.
    R. Bellairs, A. Boyde, Scanning electron microscopy of the shell membranes of the hen’s egg. Cell Tissue Res. 96(2), 237–249 (1969)Google Scholar
  28. 28.
    W. Tsai, J. Yang, C. Lai, Y. Cheng, C. Lin, C. Yeh, Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour. Technol. 97(3), 488–493 (2006)CrossRefGoogle Scholar
  29. 29.
    P.S. Guru, S. Dash, Sorption on eggshell waste—a review on ultrastructure, biomineralization and other applications. Adv. Colloid Interface Sci. 209, 49–67 (2014)CrossRefGoogle Scholar
  30. 30.
    G. Xue, Z. Yue, Z. Bing, T. Yiwei, L. Xiuying, L. Jianrong, Determination of ascorbic acid using CdTe quantum dots immobilized on eggshell membrane surface as a turn-on fluorescence probe. J. Lumin. 180, 146–150 (2016)CrossRefGoogle Scholar
  31. 31.
    H. Razmi, S.J. Musevi, R. Mohammad-Rezaei, Solid phase extraction of mercury (II) using soluble eggshell membrane protein doped with reduced graphene oxide, and its quantitation by anodic stripping voltammetry. Microchim. Acta 183(2), 555–562 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Hsieh, H.-H. Chou, C.-W. Hsieh, D.-C. Wu, C.-H. Kuo, F.-H. Lin, Hydrogen peroxide treatment of eggshell membrane to control porosity. Food Chem. 141(3), 2117–2121 (2013)CrossRefGoogle Scholar
  33. 33.
    H. Daraei, A. Mittal, J. Mittal, H. Kamali, Optimization of Cr(VI) removal onto biosorbent eggshell membrane: experimental & theoretical approaches. Desalin. Water Treat. 52(7–9), 1307–1315 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Park, K.S. Choi, D. Lee, D. Kim, K.T. Lim, K.-H. Lee, H. Seonwoo, J. Kim, Eggshell membrane: review and impact on engineering. Biosyst. Eng. 151, 446–463 (2016)CrossRefGoogle Scholar
  35. 35.
    H. Daraei, A. Mittal, M. Noorisepehr, F. Daraei, Kinetic and equilibrium studies of adsorptive removal of phenol onto eggshell waste. Environ. Sci. Pollut. Res. 20(7), 4603–4611 (2013)CrossRefGoogle Scholar
  36. 36.
    H. Daraei, A. Mittal, M. Noorisepehr, J. Mittal, Separation of chromium from water samples using eggshell powder as a low-cost sorbent: kinetic and thermodynamic studies. Desalin. Water Treat. 53(1), 214–220 (2015)CrossRefGoogle Scholar
  37. 37.
    A.B. Rodríguez-Navarro, P. Marie, Y. Nys, M.T. Hincke, J. Gautron, Amorphous calcium carbonate controls avian eggshell mineralization: a new paradigm for understanding rapid eggshell calcification. J. Struct. Biol. 190(3), 291–303 (2015)CrossRefGoogle Scholar
  38. 38.
    J. Rivera-Utrilla, I. Bautista-Toledo, M.A. Ferro-García, C. Moreno-Castilla, Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. J. Chem. Technol. Biotechnol. 76(12), 1209–1215 (2001)CrossRefGoogle Scholar
  39. 39.
    M. Arami, N.Y. Limaee, N.M. Mahmoodi, Investigation on the adsorption capability of egg shell membrane towards model textile dyes. Chemosphere 65(11), 1999–2008 (2006)CrossRefGoogle Scholar
  40. 40.
    S.-I. Ishikawa, S. Sekine, N. Miura, K. Suyama, K. Arihara, M. Itoh, Removal of selenium and arsenic by animal biopolymers. Biol. Trace Elem. Res. 102(1–3), 113–127 (2004)CrossRefGoogle Scholar
  41. 41.
    P. Liang, R. Liu, Speciation analysis of inorganic arsenic in water samples by immobilized nanometer titanium dioxide separation and graphite furnace atomic absorption spectrometric determination. Anal. Chim. Acta 602(1), 32–36 (2007)CrossRefGoogle Scholar
  42. 42.
    X. Jia, D. Gong, J. Wang, F. Huang, T. Duan, X. Zhang, Arsenic speciation in environmental waters by a new specific phosphine modified polymer microsphere preconcentration and HPLC–ICP-MS determination. Talanta 160, 437–443 (2016)CrossRefGoogle Scholar
  43. 43.
    S. Chen, X. Zhan, D. Lu, C. Liu, L. Zhu, Speciation analysis of inorganic arsenic in natural water by carbon nanofibers separation and inductively coupled plasma mass spectrometry determination. Anal. Chim. Acta 634(2), 192–196 (2009)CrossRefGoogle Scholar
  44. 44.
    Q.O. dos Santos, M.M. Silva, V.A. Lemos, S.L.C. Ferreira, J.B. de Andrade, An online preconcentration system for speciation analysis of arsenic in seawater by hydride generation flame atomic absorption spectrometry. Microchem. J. 143, 175–180 (2018)CrossRefGoogle Scholar
  45. 45.
    M.-L. Chen, C.-B. Gu, T. Yang, Y. Sun, J.-H. Wang, A green sorbent of esterified egg-shell membrane for highly selective uptake of arsenate and speciation of inorganic arsenic. Talanta 116, 688–694 (2013)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  • Luana Bastos Santos
    • 1
    • 2
  • Djalma Menezes de Oliveira
    • 1
  • Alexilda Oliveira de Souza
    • 1
  • Valfredo Azevedo Lemos
    • 1
    • 2
    Email author
  1. 1.Programa de Pós-Graduação em Química, Campus de JequiéUniversidade Estadual do Sudoeste da BahiaJequiéBrazil
  2. 2.Programa de Pós-Graduação em Química, Campus Universitário de OndinaUniversidade Federal da BahiaSalvadorBrazil

Personalised recommendations