Advertisement

Design, synthesis of organic sensitizers containing carbazole and triphenylamine π-bridged moiety for dye-sensitized solar cells

  • Sadhasivam Velu
  • Harikrishnan Muniyasamy
  • Siva AyyanarEmail author
  • Suresh Maniarasu
  • Ganapathy Veerappan
  • Murugesan SepperumalEmail author
Original Paper
  • 11 Downloads

Abstract

A series of novel push–pull-based D–π–A-containing organic dyes have been synthesized using triphenylamine and carbazole act as π-conjugated donor and cyanoacrylic acid acceptor as well as anchoring group for application of dye-sensitized solar cells. These organic dyes D1, D2 and D3 exhibited excellent photophysical, electrochemical properties, superior stoke shift, high thermal stabilities and sufficient HOMO–LUMO energy levels, which is facilitated to dye regeneration and effective injection of electron from the excited state of the dyes into the conduction band (TiO2). Our results suggested that carbazole π-bridge has an important role in the photovoltaic performance. The D1 and D2 dyes are planar linear structure, longer π-conjugated bridging units, when compared to the starburst structure of D3 organic dye. Moreover, the carbazole π-bridged conjugated D1 dye showed promising photovoltaic conversion efficiency (η) of 1.4%, Voc = 735 mV, Jsc = 2.7 mA/cm2, ff = 0.73 (fill factor), when compared with the conventional N719 and D5 organic dyes.

Graphical Abstract

Keywords

Carbazole Chemical synthesis Dye-sensitized solar cells Photoconversion efficiency Thermal stability Triphenylamine 

Notes

Acknowledgements

The authors acknowledge the financial support from the Department of Science and Technology, SERB, Extramural Major Research Project (Grant No. EMR/2015/000969), the Department of Science and Technology, CERI, New Delhi, India (Grant No. DST/TM/CERI/C130(G), and the University Grants Commission, New Delhi, India (Grant No. UGC No.41-215/2012 (SR). We acknowledge the DST-FIST, DST-PURSE, UPE programme for providing instrumental support.

Supplementary material

13738_2019_1663_MOESM1_ESM.docx (3.4 mb)
Supplementary material 1 (DOCX 3485 kb)

References

  1. 1.
    B.O. Regan, M. Gratzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  2. 2.
    P. Wang, C. Klein, T.H. Baker, S.M. Zakeeruddin, M. Gratzel, J. Am. Chem. Soc. 127, 808 (2005)CrossRefGoogle Scholar
  3. 3.
    K.A. Kakiage, Y. Yano, T. Oya, K. Fujisawa, J.I. Hanaya, J.J.H.M. Bearpark, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, Chem. Commun. 51, 15894 (2015)CrossRefGoogle Scholar
  4. 4.
    R. Yan, X. Qian, Y. Jiang, Y. He, Y. Hang, L. Hou, (2017).  https://doi.org/10.1016/j.dyepig.2017.02.011
  5. 5.
    J. Pan, H. Song, C. Lian, H. Liu, Y. Xie, Dyes and Pigments (2017).  https://doi.org/10.1016/j.dyepig.2017.01.027
  6. 6.
    W.J. Fan, Y.Z. Chang, J.L. Zhao, Z.N. Xu, D.Z. Tan, Y.G. Chend, New J. Chem. 42, 20163 (2018)CrossRefGoogle Scholar
  7. 7.
    Y. Mu, H. Wu, G. Dong, Z. Shen, S. Li, M. Zhang, J. Mater. Chem. A 6, 21493 (2018)CrossRefGoogle Scholar
  8. 8.
    P. Naik, I.M. Abdellah, M.A. Shakour, M. Acharaya, N. Pilicode, A.E. Shafei, A. Vasudeva Adhikari, Chem. Sel. 3, 12297 (2018)Google Scholar
  9. 9.
    F. Bellaa, A. Verna, C. Gerbaldi, Materials Science Semiconductor Processing (2017).  https://doi.org/10.1016/j.mssp.2017.07.030
  10. 10.
    A. Carella, R. Centore, F. Borbone, M. Toscanesi, M. Trifuoggi, F. Bella, C. Gerbaldi, S. Galliano, E. Schiavo, A. Massaro, A.B. Munoz-Garcia, M. Pavonea, Electrochimica Acta.  https://doi.org/10.1016/j.electacta.2018.09.204
  11. 11.
    S. Galliano, F. Bella, G. Piana, G. Giacona, G. Viscardi, C. Gerbaldi, M. Grätzel, C. Barolo, Sol. Energy 163, 251 (2018)CrossRefGoogle Scholar
  12. 12.
    A. Scalia, F. Bella, A. Lamberti, C. Gerbaldi, E. Tresso, Energy 166, 789 (2019)CrossRefGoogle Scholar
  13. 13.
    F. Bella, J. Popovic, A. Lamberti, E. Tresso, C. Gerbaldi, J. Maier, A.C.S. Appl, Mater. Interfaces 9, 37797 (2017)CrossRefGoogle Scholar
  14. 14.
    K.M. Manikandan, A. Yelilarasi, P. Senthamaraikannan, S.S. Saravanakumar, A. Khan, A.M. Asiri, J. Solid State Electrochem. 22, 3785 (2018)CrossRefGoogle Scholar
  15. 15.
    V. Ganapathy, B. Karunagaran, S.W. Rhee, J. Power Sour. 195, 5138 (2010)CrossRefGoogle Scholar
  16. 16.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595 (2010)CrossRefGoogle Scholar
  17. 17.
    V. Karthikeyan, S. Maniarasu, V. Manjunath, E. Ramasamy, G. Veerappan, Sol. Energy 147, 202 (2017)CrossRefGoogle Scholar
  18. 18.
    G. Veerappan, D.W. Jung, J. Kwon, J.M. Choi, N. Heo, G.R. Yi, J.H. Park, Langmuir 30, 3010 (2014)CrossRefGoogle Scholar
  19. 19.
    R. Sivakumar, R. Recabarren, S. Ramkumar, A. Manivel, J.A. Morales, D. Contreras, P. Manidurai, New J. Chem. 41, 5605 (2017)CrossRefGoogle Scholar
  20. 20.
    X. Li, J. Gui, H. Yang, W. Wu, F. Li, H. Tian, C. Huang, Inorg. Chim. Acta 361, 2835 (2008)CrossRefGoogle Scholar
  21. 21.
    H. Tian, X. Yang, R. Chen, Y. Pan, L. Li, A. Hagfeldt, L. Sun, Chem. Commun. 36, 3741 (2007)CrossRefGoogle Scholar
  22. 22.
    Y.S. Yen, H.H. Chou, Y.C. Chen, C.Y. Hsu, J.T. Lin, J. Mater. Chem. 22, 8734 (2012)CrossRefGoogle Scholar
  23. 23.
    H. Masui, M.M. Maitani, S. Fuse, A. Yamamura, Y. Ogomi, S. Hayase, T. Kaiho, H. Tanaka, Y. Wada, T. Takahashi, Asian J. Org. Chem. 7, 458 (2018)CrossRefGoogle Scholar
  24. 24.
    T.Y. Wu, M.H. Tsao, F.L. Chen, S.G. Su, C.W. Chang, H.P. Wang, Y.C. Lin, I.W. Sun, J. Iran. Chem. Soc. 7, 707 (2010)CrossRefGoogle Scholar
  25. 25.
    F. Zanjanchi, J. Beheshtian, J. Iran. Chem. Soc. (2018).  https://doi.org/10.1007/s13738-018-1561-2
  26. 26.
    K. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi, Y. Abe, H. Sugihara, H. Arakawa, Chem. Commun. 0, 1173 (2000)Google Scholar
  27. 27.
    C. Chen, J.Y. Liao, Z. Chi, B. Xu, X. Zhang, D.B. Kuang, Y. Zhang, S. Liu, J. Xu, J. Mater. Chem. 22, 8994 (2012)CrossRefGoogle Scholar
  28. 28.
    W. Li, Y. Wu, X. Li, Y. Xe, W. Zhu, Energy Environ. Sci. 4, 1830 (2011)CrossRefGoogle Scholar
  29. 29.
    D.Y. Chen, Y.Y. Hsu, H.C. Hsu, B.S. Chen, Y.T. Lee, H. Fu, M.W. Chung, S.H. Liu, H.C. Chen, Y. Chi, P.T. Chou, Chem. Commun. 46, 5256 (2010)CrossRefGoogle Scholar
  30. 30.
    H. Zhou, P. Xue, Y. Zhang, X. Zhao, J. Jia, X. Zhang, X. Lu, R. Lu, Tetrahedron 67, 8477 (2011)CrossRefGoogle Scholar
  31. 31.
    B. Nagarajan, S. Kushwaha, R. Elumalai, S. Mandal, K. Ramanujam, D. Raghavachari, J. Mater. Chem. A. 5, 10289 (2017)CrossRefGoogle Scholar
  32. 32.
    K.B. Fadadu, S.S. Soni, Electrochim. Acta 88, 270 (2013)CrossRefGoogle Scholar
  33. 33.
    X. Ma, J. Hua, W. Wu, Y. Jin, F. Meng, W. Zhan, H. Tian, Tetrahedron 64, 345 (2008)CrossRefGoogle Scholar
  34. 34.
    K.D. Seo, I.T. Choi, Y.G. Park, S. Kang, J.Y. Lee, H.K. Kim, Dyes Pigm. 94, 469 (2012)CrossRefGoogle Scholar
  35. 35.
    K. Hara, Z.S. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara, Y.D. Oh, C. Kasada, A. Shinpo, S. Suga, J. Phys. Chem. B. 109, 15476 (2005)CrossRefGoogle Scholar
  36. 36.
    Z. Shen, J. Chen, X. Li, X. Li, Y. Zhou, Y. Yu, H. Ding, J. Li, L. Zhu, J. Hua, ACS Sustinable Chem. Eng. 4, 3518 (2016)CrossRefGoogle Scholar
  37. 37.
    X. Liu, Z. Cao, H. Huang, X. Liu, Y. Tan, H. Chen, Y. Pei, S. Tan, J. Power Sour. 248, 400 (2014)CrossRefGoogle Scholar
  38. 38.
    X.F. Wang, H. Tamiaki, O. Kitao, T. Ikeuchi, S.I. Sasaki, J. Power, Sources 242, 860 (2013)CrossRefGoogle Scholar
  39. 39.
    J. Chung, C.P. Lee, D. Kumar, P.W. Chen, L.Y. Lin, K.R.J. Thomas, K.C. Ho, J. Power Sour. 240, 779 (2013)CrossRefGoogle Scholar
  40. 40.
    D. Pugliese, A. Lamberti, F. Bella, A. Sacco, S. Bianco, E. Tresso, Org. Electron. 15, 3715 (2014)CrossRefGoogle Scholar
  41. 41.
    T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, J. Am. Chem. Soc. 126, 12218 (2004)CrossRefGoogle Scholar
  42. 42.
    V.A. Chiykowski, B. Lam, C. Du, C.P. Berlinguette, Chem. Commun. 53, 2367 (2017)CrossRefGoogle Scholar
  43. 43.
    G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, P. Wang, Chem. Commun. 16, 2198 (2009)CrossRefGoogle Scholar
  44. 44.
    T.B. Raju, J.V. Vaghasiya, M.A. Afroz, S.S. Soni, P. Krishnan Iyer, Phys. Chem. Chem. Phys. 18, 28485 (2016)CrossRefGoogle Scholar
  45. 45.
    A. Karuppasamy, K. Stalindurai, J. Peng, K.C. Ho, C. Ramalingan, Phys. Chem. Chem. Phys. 18, 30105 (2016)CrossRefGoogle Scholar
  46. 46.
    D. Kumar, K.T. Wong, Mater. Today Energy 5, 243 (2017)CrossRefGoogle Scholar
  47. 47.
    Y. Ooyama, N. Yamaguchi, I. Imae, K. Komaguchi, J. Ohshita, Y. Harima, Chem. Commun. 49, 2548 (2013)CrossRefGoogle Scholar
  48. 48.
    A. Abbotto, N. Manfredi, C. Marinzi, F.D. Angelis, E. Mosconi, J. Yum, Z. Xianxi, M.K. Nazeeruddin, M. Gratzel, Energy Environ. Sci. 2, 1094 (2009)CrossRefGoogle Scholar
  49. 49.
    J. Wang, S. Liu, Z. Chai, K. Chang, M. Fang, M. Han, Y. Wang, S. Li, H. Han, Q. Li, Z. Li, J. Mater. Chem. A 6, 22256 (2018)CrossRefGoogle Scholar
  50. 50.
    G. Prakash, K. Subramanian, New J. Chem. 42, 17939 (2018)CrossRefGoogle Scholar
  51. 51.
    D.P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeldtb, L. Sun, Chem. Commun. 0, 2245 (2006)Google Scholar
  52. 52.
    M.A. Mamun, Q. Qiao, B.A. Logue, RSC Adv. 8, 31943 (2018)CrossRefGoogle Scholar
  53. 53.
    A. Karuppasamy, K. Stalindurai, J.D. Peng, K.C. Ho, C. Ramalingan, Phys. Chem. Chem. Phys. 18, 30105 (2016)CrossRefGoogle Scholar
  54. 54.
    F. Meng, Y. Liu, X. Yu, W. Lin, New J. Chem. 40, 7399 (2016)CrossRefGoogle Scholar
  55. 55.
    G. Li, Y.F. Zhou, X.B. Cao, P. Bao, K.J. Jiang, Y. Lin, L.M. Yang, Chem. Commun. 0, 2201 (2009)Google Scholar
  56. 56.
    Z. Ning, Q. Zhang, W. Wu, H. Pei, B. Liu, H. Tian, J. Org. Chem. 73, 3791 (2008)CrossRefGoogle Scholar
  57. 57.
    R. Balasaravanan, V. Sadhasivam, G. Sivaraman, A. Siva, Asian J. Org. Chem. 5, 399 (2016)CrossRefGoogle Scholar
  58. 58.
    R.Y.Y. Lin, H.W. Lin, Y.S. Yen, C.H. Chang, H.H. Chou, P.W. Chen, C.Y. Hsu, Y.C. Chen, J.T. Lin, K.C. Ho, Energy Environ. Sci. 6, 2477 (2013)CrossRefGoogle Scholar
  59. 59.
    Y. Ooyama, K. Furue, T. Enoki, M. Kanda, Y. Adachi, J. Ohshita, Phys. Chem. Chem. Phys. 18, 30662 (2016)CrossRefGoogle Scholar
  60. 60.
    A. Jankovic, Z.V. Saponjic, M.I. Comor, J.M. Nedeljkovic, J. Phys. Chem. C 113, 12645 (2009)CrossRefGoogle Scholar
  61. 61.
    J.V. Vaghasiya, K.K. Sonigara, J. Prasad, T. Beuvier, A. Gibaud, S.S. Soni, J. Mater. Chem. A. 5, 5373 (2017)CrossRefGoogle Scholar
  62. 62.
    B.G. Kim, K.M. Chung, J.S. Kim, Chem. Eur. J. 19, 5220 (2013)CrossRefGoogle Scholar
  63. 63.
    Y.A. Sadiki, S.M. Bouzzine, L. Bejjit, G.S. Moran, M. Hamidi, M. Bouachrine, F. Serein-Spirau, J.P. Lere Porte, J. Marc Sotiropoulos, L.G. Candia, D.G. Mitnik, J. Iran. Chem. Soc. 13, 37 (2016)CrossRefGoogle Scholar
  64. 64.
    A.N. Krol, B. Filmmel, M. Son, D. Kim, F. Warthner, Faraday Discuss. 185, 507 (2015)CrossRefGoogle Scholar
  65. 65.
    P. Arul, S.A. John, Electrochim. Acta 235, 680 (2017)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  • Sadhasivam Velu
    • 1
  • Harikrishnan Muniyasamy
    • 1
  • Siva Ayyanar
    • 1
    Email author
  • Suresh Maniarasu
    • 2
  • Ganapathy Veerappan
    • 2
  • Murugesan Sepperumal
    • 1
    Email author
  1. 1.Supramolecular and Organometallic Chemistry Lab, Department of Inorganic ChemistryMadurai Kamaraj UniversityMaduraiIndia
  2. 2.Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)BalapurIndia

Personalised recommendations