Palladium-doped graphene-modified nano-carbon ionic liquid electrode: preparation, characterization and simultaneous voltammetric determination of dopamine and uric acid

  • Yong-Hong LiEmail author
  • Ying Ji
  • Bin-Bin Ren
  • Lei-Na Jia
  • Qian Cai
  • Xin-Sheng LiuEmail author
Original Paper


We described a nano-carbon ionic liquid electrode modified with palladium-doped graphene (Pd-GR/nano-CILE) for electrochemical analysis of dopamine (DA) and uric acid (UA). The surface morphologies of the electrodes and palladium-doped graphene (Pd-GR) were observed by scanning electron microscopy and transmission electron microscopy. Cyclic voltammetry and electrochemical impedance spectroscopy were used for investigating the electrochemical properties of the proposed sensor. The oxidation peaks of DA and UA were well separated at the Pd-GR/nano-CILE using differential pulse voltammetry. The sensor displayed good electrocatalytic activity toward DA and UA with increased peak currents and reduced peak potentials compared with conventional carbon paste electrode. Under optimal conditions, linear calibration plots for the analysis of DA and UA were obtained in the range of 5–200 μM, respectively. The detection limits (at an S/N ratio of 3) were 0.5 μM for DA and 0.8 μM for UA. The method was successfully applied to the determination of DA and UA in spiked human urine and serum samples.


Palladium-doped graphene Nano-carbon ionic liquid electrode Electrochemical impedance spectroscopy Differential pulse voltammetry Human urine samples 



This research was supported by Ningxia Higher School Scientific Research Project (No. NGY2016118) and Top Discipline of Public Health and Prevent Medicine (NXYLXK2017B08), Education Department of Ningxia, China.

Supplementary material

13738_2019_1660_MOESM1_ESM.docx (31 kb)
Supplementary material 1 (DOCX 30 kb)


  1. 1.
    M.C. Bonetto, F.F. Muñoz, V.E. Diz, N.J. Sacco, E. Cortón, Electrochim. Acta 283, 338 (2018)CrossRefGoogle Scholar
  2. 2.
    Y.V.M. Reddy, B. Sravani, S. Agarwal, V.K. Gupta, G. Madhavi, J. Electroanal. Chem. 820, 168 (2018)CrossRefGoogle Scholar
  3. 3.
    K. Krishnamoorthy, V. Sudha, S.M.S. Kumar, R. Thangamuthu, J. Alloy. Compound. 748, 338 (2018)CrossRefGoogle Scholar
  4. 4.
    Y.C. Li, Y.Y. Jiang, Y.Y. Song, Y.H. Li, S.X. Li, Microchim. Acta 185, 382 (2018)CrossRefGoogle Scholar
  5. 5.
    H. Song, G.P. Xue, J.J. Zhang, G. Wang, B.C. Ye, S.G. Sun, L.P. Tian, Y.C. Li, Microchim. Acta 184, 843 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Noroozifar, M. Khorasani-Motlagh, M.B. Parizi, R. Akbari, Ionics 19, 1317 (2013)CrossRefGoogle Scholar
  7. 7.
    N. Maleki, A. Safavi, F. Tajabadi, Anal. Chem. 78, 3820 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Safavi, N. Maleki, O. Moradlou, F. Tajabadi, Anal. Biochem. 359, 224 (2006)CrossRefGoogle Scholar
  9. 9.
    A. Safavi, N. Maleki, O. Moradlou, Electroanalysis 20, 2158 (2008)CrossRefGoogle Scholar
  10. 10.
    A. Rabti, C.C. Mayorga-Martinez, L. Baptista-Pires, N. Raouafi, A. Merkoçi, Anal. Chim. Acta 926, 28 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Yiğit, Y. Yardım, M. Çelebi, A. Levent, Z. Şentürk, Talanta 158, 21 (2016)CrossRefGoogle Scholar
  12. 12.
    J.T. Qiao, Y.L. Zhang, S. Lei, Z. Liu, G.P. Li, B.X. Ye, Talanta 188, 714 (2018)CrossRefGoogle Scholar
  13. 13.
    G. Divyapriya, I. Nambi, J. Senthilnathan, Chemosphere 209, 113 (2018)CrossRefGoogle Scholar
  14. 14.
    M.H. Ghalehno, M. Mirzaei, M. Torkzadeh-Mahani, Bioelectrochemistry 124, 165 (2018)CrossRefGoogle Scholar
  15. 15.
    C. Ma, Y.Y. Qian, S.P. Zhang, H.O. Song, J.J. Gao, S. Wang, M.X. Liu, K.J. Xie, X.M. Zhang, Sensor. Actuat. B 274, 441 (2018)CrossRefGoogle Scholar
  16. 16.
    S.J. Gupta, R. Meek, Sensor. Actuat. B 274, 85 (2018)CrossRefGoogle Scholar
  17. 17.
    J.H. Li, J.B. Jiang, D. Zhao, Z.F. Xu, M.Q. Liu, P.H. Deng, X. Liu, C.M. Yang, D. Qian, H.B. Xie, J. Alloy. Compd. 769, 566 (2018)CrossRefGoogle Scholar
  18. 18.
    N.S. Anuar, W.J. Basirun, M. Ladan, M. Shalauddin, M.S. Mehmood, Sensor. Actuat. B 266, 375 (2018)CrossRefGoogle Scholar
  19. 19.
    Z.R. Zad, S.S.H. Davarani, A. Taheri, Y. Bide, J. Mol. Liq. 253, 233 (2018)CrossRefGoogle Scholar
  20. 20.
    B. Rezaei, N. Askarpour, A.A. Ensafi, Colloid. Surf. B 109, 253 (2013)CrossRefGoogle Scholar
  21. 21.
    D.K. Gosser, Cyclic Voltammetry, Simulation and Analysis of Reaction Mechanisms (Wiley-VCH, New York, 1993)Google Scholar
  22. 22.
    P. Sierra-Rosales, C. Toledo-Neira, J.A. Squella, Sensor. Actuat. B 240, 1257 (2017)CrossRefGoogle Scholar
  23. 23.
    Q.W. Lian, Z.F. He, Q. He, A. Luo, K.W. Yan, D.X. Zhang, X.Q. Lu, X.B. Zhou, Anal. Chim. Acta 823, 32 (2014)CrossRefGoogle Scholar
  24. 24.
    M.M. Rahman, N.S. Lopa, M.J. Ju, J.J. Lee, J. Electroanal. Chem. 792, 54 (2017)CrossRefGoogle Scholar
  25. 25.
    C. Wang, J. Li, X.Y. Luo, J.M. Hui, X. Liu, J. Tan, X. Zhao, J. Electroanal. Chem. 780, 147 (2016)CrossRefGoogle Scholar
  26. 26.
    J. Wang, B.B. Yang, J.T. Zhong, B. Yan, K. Zhang, C.Y. Zhai, Y. Shiraishi, Y.K. Du, P. Yang, J. Colloid. Interf. Sci. 497, 172 (2017)CrossRefGoogle Scholar
  27. 27.
    H.W. Yu, J.H. Jiang, Z. Zhang, G.C. Wan, Z.Y. Liu, D. Chang, H.Z. Pan, Anal. Biochem. 519, 92 (2017)CrossRefGoogle Scholar
  28. 28.
    X. Zhang, Y.C. Zhang, L.X. Ma, Sensor. Actuat. B 227, 488 (2016)CrossRefGoogle Scholar
  29. 29.
    D.D. Zhang, L.Z. Li, W.N. Ma, X. Chen, Y.M. Zhang, Mater. Sci. Eng., C 70, 241 (2017)CrossRefGoogle Scholar
  30. 30.
    X.H. Zhu, Y. Liang, X.X. Zuo, R.P. Hu, X. Xiao, J.M. Nan, Electrochim. Acta 143, 366 (2014)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Electrochemistry and Spectroscopy Analysis Laboratory, School of Public Health and ManagementNingxia Medical UniversityYinchuanPeople’s Republic of China
  2. 2.School of Basic Medical SciencesNingxia Medical UniversityYinchuanPeople’s Republic of China

Personalised recommendations