Preparation of various boron-doped TiO2 nanostructures by in situ anodizing method and investigation of their photoelectrochemical and photocathodic protection properties

  • Mohamad Mohsen MomeniEmail author
  • Mohammad Taghinejad
  • Yousef Ghayeb
  • Robabeh Bagheri
  • Zhenlun Song
Original Paper


Boron (a metalloid) has been chosen as the doping agent in the titanium dioxide structure via in situ anodizing method in this work. FE-SEM, XPS, Raman spectroscopy, XRD, EDX and UV–visible techniques were used to investigate the morphology, structure and optical properties of the samples prepared. XPS and UV–visible techniques were used to confirm the presence of boron in the nanotubes and the reduction in band gap, respectively. Afterward, the impact of the concentration of the doping agent on the photoelectrocatalytic and anticorrosion properties of the nanotubes was studied through different electrochemical techniques such as linear sweep voltammetry, chronoamperometry, open-circuit potential and Tafel under visible light. Better photocatalytic performance and anticorrosion properties are shown by nanotubes modified by boron compared with bare titanium dioxide nanotubes, according to the results. The photo-response increases dramatically as boric acid concentration in anodizing electrolyte is increased from samples BT1 to BT10 and slowly decreases for samples BT10-BT25. The best photoelectrocatalytic performance in photoelectrochemical water splitting studies was shown by samples BT10 and BT15. Ultimately, the photo-generated cathodic protection of 403 stainless steel (403SS) has been studied in a corrosion cell using a 3.5% NaCl solution under visible light by the photocatalysts prepared. The photocatalytic activity of TiO2 under visible light illumination was enhanced by doping of boron, based on the results.


In situ anodizing Nanotube Boron Photo-generated cathodic protection Water splitting 

Supplementary material

13738_2019_1658_MOESM1_ESM.doc (182 kb)
Supplementary material 1 (DOC 182 kb)


  1. 1.
    F. Wang, Y. Jiang, A. Gautam, Y. Li, R. Amal, ACS Catal 4, 1451–1457 (2014)CrossRefGoogle Scholar
  2. 2.
    S. Li, J. Fu, Corros. Sci. 68, 101–110 (2013)CrossRefGoogle Scholar
  3. 3.
    M.M. Momeni, Y. Ghayeb, F. Ezati, J. Colloid Interface Sci. 514, 70–82 (2018)CrossRefGoogle Scholar
  4. 4.
    R. Jaiswal, N. Patel, A. Dashora, R. Fernandes, M. Yadav, R. Edla, R. Varma, D. Kothari, B. Ahuja, A. Miotello, Appl. Catal. B-Environ. 183, 242–253 (2016)CrossRefGoogle Scholar
  5. 5.
    J. Tripathy, K. Lee, P. Schmuki, Angew. Chem. 126, 12813–12816 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Kudo, M. Sekizawa, Chem. Commun. 1371–1372 (2000)Google Scholar
  7. 7.
    N. Lieske, R. Hezel, J. Appl. Phys. 52, 5806–5810 (1981)CrossRefGoogle Scholar
  8. 8.
    J. Zhang, J. Yu, Y. Zhang, Q. Li, J.R. Gong, Nano Lett. 11, 4774–4779 (2011)CrossRefGoogle Scholar
  9. 9.
    Y. Lin, G. Yuan, R. Liu, S. Zhou, S.W. Sheehan, D. Wang, Chem. Phys. Lett. 507, 209–215 (2011)CrossRefGoogle Scholar
  10. 10.
    A. Zaleska, Recent Pat. Eng. 2, 157–164 (2008)CrossRefGoogle Scholar
  11. 11.
    R. Daghrir, P. Drogui, D. Robert, Ind. Eng. Chem. Res. 52, 3581–3599 (2013)CrossRefGoogle Scholar
  12. 12.
    J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Small 3, 300–304 (2007)CrossRefGoogle Scholar
  13. 13.
    M.M. Momeni, Y. Ghayeb, M. Shafiei, Dalton Trans. 46, 12527–12536 (2017)CrossRefGoogle Scholar
  14. 14.
    K.R. Reyes-Gil, D.B. Robinson, ACS Appl. Mater. Interface 5, 12400–12410 (2013)CrossRefGoogle Scholar
  15. 15.
    N. Feng, A. Zheng, Q. Wang, P. Ren, X. Gao, S.-B. Liu, Z. Shen, T. Chen, F. Deng, J. Phys. Chem. C 115, 2709–2719 (2011)CrossRefGoogle Scholar
  16. 16.
    Y. Hou, X. Li, Q. Zhao, X. Quan, G. Chen, J. Mater. Chem. 21, 18067–18076 (2011)CrossRefGoogle Scholar
  17. 17.
    S. In, A. Orlov, R. Berg, F. García, S. Pedrosa-Jimenez, M.S. Tikhov, D.S. Wright, R.M. Lambert, J. Am. Chem. Soc. 129, 13790–13791 (2007)CrossRefGoogle Scholar
  18. 18.
    S.C. Moon, H. Mametsuka, S. Tabata, E. Suzuki, Catal. Today 58, 125–132 (2000)CrossRefGoogle Scholar
  19. 19.
    N. Lu, X. Quan, J. Li, S. Chen, H. Yu, G. Chen, J. Phys. Chem. C 111(2007), 11836–11842 (1842)Google Scholar
  20. 20.
    N. Lu, H. Zhao, J. Li, X. Quan, S. Chen, Sep. Purif. Technol. 62, 668–673 (2008)CrossRefGoogle Scholar
  21. 21.
    J.H. Park, S. Kim, A.J. Bard, Nano Lett. 6, 24–28 (2006)CrossRefGoogle Scholar
  22. 22.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269–271 (2001)CrossRefGoogle Scholar
  23. 23.
    A. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, Nano Lett. 6, 1080–1082 (2006)CrossRefGoogle Scholar
  24. 24.
    T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Appl. Phys. Lett. 81, 454–456 (2002)CrossRefGoogle Scholar
  25. 25.
    J. Luo, L. Ma, T. He, C.F. Ng, S. Wang, H. Sun, H.J. Fan, J. Phys. Chem. C 116(2012), 11956–11963 (1963)Google Scholar
  26. 26.
    B. Pal, M. Sharon, G. Nogami, Mater. Chem. Phys. 59, 254–261 (1999)CrossRefGoogle Scholar
  27. 27.
    S. Li, Z. Ma, L. Wang, J. Liu, Sci. China Ser. B-Chem. 51, 179–185 (2008)CrossRefGoogle Scholar
  28. 28.
    S.B. Khan, M.M. Rahman, A.M. Asiri, H.M. Marwani, S.M. Bawaked, K.A. Alamry, New J. Chem. 37, 2888–2893 (2013)CrossRefGoogle Scholar
  29. 29.
    E.B. Simsek, Appl. Catal. B-Environ. 200, 309–322 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Wu, M. Xing, J. Zhang, J. Hazard. Mater. 192, 368–373 (2011)Google Scholar
  31. 31.
    M. Szkoda, K. Siuzdak, A. Lisowska-Oleksiak, J. Karczewski, J. Ryl, Electrochem. Commun. 60, 212–215 (2015)CrossRefGoogle Scholar
  32. 32.
    A. Subramanian, H.W. Wang, Appl. Surf. Sci. 258, 6479–6484 (2012)CrossRefGoogle Scholar
  33. 33.
    M. Sobaszek, K. Siuzdak, M. Sawczak, J. Ryl, R. Bogdanowicz, Thin Solid Films 601, 35–40 (2016)CrossRefGoogle Scholar
  34. 34.
    L. Li, J. Zhang, Y. Zou, W. Jiang, W. Lei, Z. Ma, J. Electroanal. Chem. 833, 573–579 (2019)CrossRefGoogle Scholar
  35. 35.
    V. Mote, Y. Purushotham, B. Dole, J. Theor. Appl. Phys. 6, 6–13 (2012)CrossRefGoogle Scholar
  36. 36.
    L. Jing, Z. Xu, X. Sun, J. Shang, W. Cai, Appl. Surf. Sci. 180, 308–314 (2001)CrossRefGoogle Scholar
  37. 37.
    M.M. Momeni, Y. Ghayeb, J. Alloys Compd. 637, 393–400 (2015)CrossRefGoogle Scholar
  38. 38.
    C.Y. Jimmy, J. Yu, J. Zhao, Appl. Catal. B-Environ. 36, 31–43 (2002)CrossRefGoogle Scholar
  39. 39.
    J. Xu, Y. Ao, M. Chen, D. Fu, J. Alloys Compd. 484, 73–79 (2009)CrossRefGoogle Scholar
  40. 40.
    B. Buchholcz, E. Varga, T. Varga, K. Plank, J. Kiss, Z. Kónya, Vacuum 138, 120–124 (2017)CrossRefGoogle Scholar
  41. 41.
    X. Zhou, F. Peng, H. Wang, H. Yu, J. Yang, J. Solid State Chem. 184, 134–140 (2011)CrossRefGoogle Scholar
  42. 42.
    X. Chen, L. Liu, Y.Y. Peter, S.S. Mao, Science 331, 746–750 (2011)CrossRefGoogle Scholar
  43. 43.
    S. Rehman, R. Ullah, A. Butt, N. Gohar, J. Hazard. Mater. 170, 560–569 (2009)CrossRefGoogle Scholar
  44. 44.
    W. Zhang, Y. He, M. Zhang, Z. Yin, Q. Chen, J. Phys. D Appl. Phys. 33, 912 (2000)CrossRefGoogle Scholar
  45. 45.
    S.H. Kang, J.-Y. Kim, H.S. Kim, Y.E. Sung, J. Ind. Eng. Chem. 14, 52–59 (2008)CrossRefGoogle Scholar
  46. 46.
    J. Li, N. Lu, X. Quan, S. Chen, H. Zhao, Ind. Eng. Chem. Res. 47, 3804–3808 (2008)CrossRefGoogle Scholar
  47. 47.
    M.M. Momeni, Y. Ghayeb, N. Moosavi, Nanotechnology 29, 425701 (2018)CrossRefGoogle Scholar
  48. 48.
    M.M. Momeni, M. Mahvari, Y. Ghayeb, J. Electroanal. Chem. 832, 7–23 (2019)CrossRefGoogle Scholar
  49. 49.
    Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, J. Ye, J. Mater. Chem. A 1, 5766–5774 (2013)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of ChemistryIsfahan University of TechnologyIsfahanIran
  2. 2.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople’s Republic of China

Personalised recommendations