A catalyst-free 1,4-Michael-type reaction of in situ generated ortho-quinone methides (o-QMs) with dithiocarbamic acid salts in water

  • Fezzeh AryanasabEmail author
  • Meisam Shabanian
Original Paper



A catalyst-free conjugate addition of dithiocarbamic acid salts to in situ generated ortho-quinone methides (o-QMs) was investigated for the first time. Several dithiocarbamate derivatives of 4-hydroxycoumarine, 4-hydroxypyrone and 2-naphthol were synthesized in moderate-to-good yields in water at room temperature.

Graphical abstract

Catalyst-free addition of dithiocarbamic acid salts to in situ generated o-QMs in water at room temperature.


Catalyst-free Chromanes Dithiocarbamate Green chemistry Ortho-quinone methides 



The authors wish to express their gratitude to Research Council of Standard Research Institute for the support of this work.


  1. 1.
    S.E. Rokita, Quinone Methides Wiley Series of Reactive Intermediates in Chemistry and Biology. (Wiley, New York, 2009)Google Scholar
  2. 2.
    W.J. Bai, J.G. David, Z.G. Feng, M.G. Weaver, K.L. Wu, T.R.R. Pettus, The domestication of ortho-quinone methides. Acc. Chem. Res. 47, 3655–3664 (2014)CrossRefGoogle Scholar
  3. 3.
    M.S. Singh, A. Nagaraju, N. Ananda, S. Chowdhury, ortho-Quinone methide (o-QM): a highly reactive, ephemeral and versatile intermediate in organic synthesis. RSC Adv. 4, 55924–55959 (2014)CrossRefGoogle Scholar
  4. 4.
    P. Wan, B. Barker, L. Diao, M. Fischer, Y. Shi, C. Yang, Quinone methides: relevant intermediates in organic chemistry. Can. J. Chem. 74, 465–475 (1996)CrossRefGoogle Scholar
  5. 5.
    J.P. Richard, M.M. Toteva, J. Crugeiras, Structure–reactivity relationships and intrinsic reaction barriers for nucleophile additions to a quinone methide: a strongly resonance-stabilized carbocation. J. Am. Chem. Soc. 122, 1664–1674 (2000)CrossRefGoogle Scholar
  6. 6.
    G. Groszek, S. Błażej, A. Brud, D. Świerczyński, T. Lemek, Reactions of carbanions derived from α-substituted-methyl tolyl sulfones with quinone methides as Michael acceptors. Tetrahedron 62, 2622–2633 (2006)CrossRefGoogle Scholar
  7. 7.
    J. Liu, X. Wang, L. Xu, Z. Hao, L. Wang, J. Xiao, One step synthesis of 2-alkenylchromanes via inverse electron-demand hetero-Diels–Alder reaction of o-quinone methide with unactivated dienes. Tetrahedron 72, 7642–7649 (2016)CrossRefGoogle Scholar
  8. 8.
    N.J. Willis, C.D. Bray, ortho-Quinone methides in natural product synthesis. Chem. Eur. J. 18, 9160–9173 (2012)CrossRefGoogle Scholar
  9. 9.
    K. Wojciechowski, K. Dolatowska, Generation of ortho-quinone methides upon thermal extrusion of sulfur dioxide from benzosultones. Tetrahedron 61, 8419–8774 (2005)CrossRefGoogle Scholar
  10. 10.
    T. Katada, S. Eguchi, T. Esaki, T. Sasaki, Thermal cycloaddition reactions of thiocarbonyl compounds. Part 3. A novel [4+2] cycloaddition reaction of thiocarbonyl compounds with o-quinone methanides. J. Chem. Soc. Perkin Trans. 1, 2649–2653 (1984)CrossRefGoogle Scholar
  11. 11.
    A.K. Shaikh, A.J.A. Cobb, G. Varvounis, Mild and rapid method for the generation of ortho-(Naptho)quinone methide intermediates. Org. Lett. 14, 584–587 (2012)CrossRefGoogle Scholar
  12. 12.
    Y.F. Wong, Z. Wang, W.X. Hong, J. Sun, A one-pot oxidation/cycloaddition cascade synthesis of 2,4-diaryl chromans via ortho-quinone methides. Tetrahedron 72, 2748–2751 (2016)CrossRefGoogle Scholar
  13. 13.
    J.P. Lumb, D. Trauner, Pericyclic reactions of prenylated naphthoquinones: biomimetic syntheses of mollugin and microphyllaquinone. Org. Lett. 7, 5865–5868 (2005)CrossRefGoogle Scholar
  14. 14.
    Y. Chiang, A.J. Kresge, Y. Zhu, Flash photolytic generation of ortho-quinone methide in aqueous solution and study of its chemistry in that medium. J. Am. Chem. Soc. 123, 8089–8094 (2001)CrossRefGoogle Scholar
  15. 15.
    S. Arumugam, V.V. Popik, Dual reactivity of hydroxy- and methoxy-substituted o-quinone methides in aqueous solutions: hydration versus tautomerization. J. Org. Chem. 75, 7338–7346 (2010)CrossRefGoogle Scholar
  16. 16.
    K. Chiba, T. Hirano, Y. Kitano, M. Tada, Montmorillonite-mediated hetero-Diels–Alder reaction of alkenes and o-quinomethanes generated in situ by dehydration of o-hydroxybenzyl alcohols. Chem. Commun. 691–692 (1999)Google Scholar
  17. 17.
    G.D. Thorn, R.A. Ludwig, The Dithiocarbamates and Related Compounds (Elsevier, Amsterdam, 1962)Google Scholar
  18. 18.
    M.S. Kang, E.K. Choi, D.H. Choi, S.Y. Ryu, H.H. Lee, H.C. Kang, J.T. Koh, K.S. Kim, Y.C. Hwang, S.J. Yoon, S.M. Kim, K.H. Yang, I.C. Kang, Antibacterial activity of pyrrolidine dithiocarbamate. FEMS Microbiol. Lett. 280, 250–254 (2008)CrossRefGoogle Scholar
  19. 19.
    C.R. Miller, W.O. Elson, Dithiocarbamic acid derivatives I. The relation of chemical structure to in vitro antibacterial and antifungal activity against human pathogens. J. Bacteriol. 57, 47–54 (1949)Google Scholar
  20. 20.
    Y. Qin, S. Liu, R. Xing, H. Yu, K. Li, X. Men, R. Li, P. Li, Synthesis and characterization of dithiocarbamate chitosan derivatives with enhanced antifungal activity. Carbohyd. Polym. 89, 388–393 (2012)CrossRefGoogle Scholar
  21. 21.
    Y.C. Duan, Y.C. Ma, E. Zhang, X.J. Shi, M.M. Wang, X.W. Ye, H.M. Liu, Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. Eur. J. Med. Chem. 62, 11–19 (2013)CrossRefGoogle Scholar
  22. 22.
    T.W. Greene, P.G.M. Wuts, Protecting Groups in Organic Synthesis, 3rd edn. (Wiley Interscience, New York, 1999), p. 484CrossRefGoogle Scholar
  23. 23.
    P. Morf, F. Raimondi, H.G. Nothofer, B. Schnyder, A. Yasuda, J.M. Wessels, T.A. Jung, Dithiocarbamates: functional and versatile linkers for the formation of self-assembled monolayers. Langmuir 22, 658–663 (2006)CrossRefGoogle Scholar
  24. 24.
    J.T. Lai, R. Shea, Controlled radical polymerization by carboxyl- and hydroxyl-terminated dithiocarbamates and xanthates. J. Polym. Sci. A Polym. 44, 4298 (2006)CrossRefGoogle Scholar
  25. 25.
    G. Moad, E. Rizzardo, S.H. Thang, Living radical polymerization by the RAFT process—a second update. Aust. J. Chem. 62, 1402–1472 (2009)CrossRefGoogle Scholar
  26. 26.
    W.C. Hsien, Phase-transfer-catalysed preparation of S-alkyl thiocarbamates. Synthesis 8, 622–623 (1981)CrossRefGoogle Scholar
  27. 27.
    P.J. Nieuwenhuizen, A.W. Ehlers, J.G. Haasnoot, S.R. Janse, J. Reedijk, E.J. Baerends, The mechanism of zinc(II)-dithiocarbamate-accelerated vulcanization uncovered; theoretical and experimental evidence. J. Am. Chem. Soc. 121, 163–168 (1999)CrossRefGoogle Scholar
  28. 28.
    D. Buac, S. Schmitt, G. Ventro, F.R. Kona, Q.P. Dou, Metal-dithiocarbamate complexes: chemistry and biological activity. Mini Rev. Med. Chem. 12, 1193–1201 (2012)CrossRefGoogle Scholar
  29. 29.
    N. Azizi, B. Pourhasan, F. Aryanasab, M.R. Saidi, A simple and novel eco-friendly process for the one-pot synthesis of dithiocarbamates from amines, carbon disulfide, and epoxides. Synlett 8, 1239–1242 (2007)Google Scholar
  30. 30.
    N. Azizi, F. Aryanasab, M.R. Saidi, Straightforward and highly efficient catalyst-free one-pot synthesis of dithiocarbamates under solvent-free conditions. Org. Lett. 8, 5275–5277 (2006)CrossRefGoogle Scholar
  31. 31.
    D. Chaturvedi, S. Ray, An efficient, one-pot synthesis of dithiocarbamates from the corresponding alcohols using Mitsunobu’s reagent. Tetrahedron Lett. 47, 1307–1309 (2006)CrossRefGoogle Scholar
  32. 32.
    N. Azizi, F. Aryanasab, L. Torkiyan, A. Ziyaei, M.R. Saidi, One-pot synthesis of dithiocarbamates accelerated in water. J. Org. Chem. 71, 3634–3635 (2006)CrossRefGoogle Scholar
  33. 33.
    F. Aryanasab, M.R. Saidi, Transition metal-free addition of dithiocarbamates to alkynes: one-pot regioselective synthesis of S-vinyl dithiocarbamates under solvent-free conditions. Monatsh. Chem. 145, 521–526 (2014)CrossRefGoogle Scholar
  34. 34.
    F. Aryanasab, A magnetically recyclable iron oxide-supported copper oxide nanocatalyst (Fe3O4–CuO) for one-pot synthesis of S-aryl dithiocarbamates under solvent-free conditions. RSC Adv. 6, 32018–32024 (2016)CrossRefGoogle Scholar
  35. 35.
    T. Chatterjee, S. Bhadra, B.C. Ranu, Transition metal-free procedure for the synthesis of S-aryl dithiocarbamates using aryl diazonium fluoroborate in water at room temperature. Green Chem. 13, 1837–1842 (2011)CrossRefGoogle Scholar
  36. 36.
    A. Ziyaei Halimehjani, M. Hajiloo Shayegan, M. Mahmoodi Hashemi, B. Notash, Investigation of the reaction of dithiocarbamic acid salts with aromatic aldehydes. Org. Lett. 14, 3838–3841 (2012)CrossRefGoogle Scholar
  37. 37.
    Y. Zou, S. Yu, R. Li, Q. Zhao, X. Li, M. Wu, T. Huang, X. Chai, H. Hu, Q. Wu, Synthesis, antifungal activities and molecular docking studies of novel 2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl) propyl dithiocarbamates. Eur. J. Med. Chem. 74, 366–374 (2014)CrossRefGoogle Scholar
  38. 38.
    H.Y. Kim, J.D. Lee, Synthesis and antifungal activity of dithiocarbamoic acid derivatives. J. Chosun Nat. Sci. 2, 198–201 (2009)Google Scholar
  39. 39.
    F. Aryanasab, M.R. Saidi, Dithiocarbamic acids and thiols as nucleophiles in the Bargellini reaction. Sci. Iran. 19, 551–554 (2012)CrossRefGoogle Scholar
  40. 40.
    A. Kumar, M. Kumar, M.G. Kumar, Catalyst-free hydroarylation of in situ generated ortho-quinone methide (o-QM) with electron rich arenes in water. Green Chem. 14, 2677–2681 (2012)CrossRefGoogle Scholar
  41. 41.
    A. Kumar, M. Kumar, M.G. Kumar, L.G. Prakash, A catalyst-free C–H hydroarylation of coumarin derived ortho-quinone methide (o-QM) with electron rich arenes in glycerol. RSC Adv. 2, 8277–8280 (2012)CrossRefGoogle Scholar
  42. 42.
    D.C. Rideout, R. Breslow, Hydrophobic acceleration of Diels–Alder reactions. J. Am. Chem. Soc. 102, 7816–7817 (1980)CrossRefGoogle Scholar
  43. 43.
    R. Breslow, Hydrophobic effects on simple organic reactions in water. Acc. Chem. Res. 24, 159–164 (1991)CrossRefGoogle Scholar
  44. 44.
    C.J. Li, L. Chen, Organic chemistry in water. Chem. Soc. Rev. 35, 68–82 (2006)CrossRefGoogle Scholar
  45. 45.
    S.H. Mashraqui, M.B. Patil, H.D. Mistry, S. Ghadigaonkar, A. Meetsma, A three-component reaction of phenol, aldehyde, and active methylene substrate under Lewis acid catalysis: successful trapping of o-quinone methide to afford benzopyran systems. Chem. Lett. 33, 1058–1059 (2004)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Petrochemical EngineeringStandard Research Institute (SRI)KarajIran

Personalised recommendations