Advertisement

Highly regio- and diastereoselective synthesis of oxo-1,2,3,4-tetrahydropyrazino[1,2-a]indoles, based on a post-Ugi condensation: joint experimental and computational study

  • Morteza ShiriEmail author
  • Majid M. HeraviEmail author
  • Vahideh Zadsirjan
  • Mina Ghiasi
  • Suhas A. Shintre
  • Neil A. Koorbanally
  • Thishana Singh
Original Paper
  • 1 Downloads

Abstract

A novel series of oxo-1,2,3,4-tetrahydropyrazino[1,2-a]indoles were synthesized via a two-step pathway. In the first step, Ugi-four-component condensation of 2-formylindole, amines, (E)-4-alkoxy-4-oxobut-2-enoic acids, and isocyanides gave the corresponding Ugi-adducts. This adduct underwent intramolecular hydroamination in the presence of K2CO3 in CH3CN at room temperature to afford diastereoselective synthesis of a range of oxo-1,2,3,4-tetrahydropyrazino[1,2-a]indoles. A comparison of experimentally observed CD and UV–visible spectra with the theoretical DFT calculated ECD spectra was used to predict the major diastereomer.

Keywords

Ugi reaction 2-Formylindole Multicomponent reaction α,β-Unsaturated acids Cyclization Intramolecular hydroamination DFT ECD spectra 

Notes

Acknowledgements

The authors would like to thank the Alzahra University and Iran National Science Foundation (INSF) for financial support. We are also very grateful for Prof. Adolf Gogoll and Dr. Sandra Olsson from Uppsala University (Uppsala, Sweden) for doing experimental ECD and UV–visible spectroscopy.

Supplementary material

13738_2019_1632_MOESM1_ESM.docx (8 mb)
Supplementary material 1 (DOCX 8173 KB)

References

  1. 1.
    B.M. Trost, Science 254, 1471 (1991)CrossRefGoogle Scholar
  2. 2.
    L.F. Tietze, Chem. Rev. 96, 115 (1996)CrossRefGoogle Scholar
  3. 3.
    P.A. Wender, S.T. Handy, D.L. Wright, Chem. Ind. 765, 767 (1997)Google Scholar
  4. 4.
    S.L. Schreiber, Science 287, 1964 (2000)CrossRefGoogle Scholar
  5. 5.
    A. Dömling, I. Ugi, Angew. Chem. Int. Ed. 39, 3168 (2000)CrossRefGoogle Scholar
  6. 6.
    A. Domling, Chem. Rev. 106, 17 (2006)CrossRefGoogle Scholar
  7. 7.
    J.D. Sunderhaus, S.F. Martin, Chem. Eur. J. 15, 1300 (2009)CrossRefGoogle Scholar
  8. 8.
    B.B. Touré, D.G. Hall, Chem. Rev. 109, 4439 (2009)CrossRefGoogle Scholar
  9. 9.
    B. Ganem, Acc. Chem. Res. 42, 463 (2009)CrossRefGoogle Scholar
  10. 10.
    A. Váradi, T.C. Palmer, R.N. Dardashti, S. Majumdar, Molecules 21, 19 (2016)CrossRefGoogle Scholar
  11. 11.
    N.A. Afagh, A.K. Yudin, Angew. Chem. Int. Ed. 49, 262 (2010)CrossRefGoogle Scholar
  12. 12.
    U.K. Sharma, N. Sharma, D.D. Vachhania, E.V. Van der Eycken, Chem. Soc. Rev. 44, 1836 (2015)CrossRefGoogle Scholar
  13. 13.
    I. Ugi, R. Meyr, U. Fetzer, C. Steinbrückner, Angew. Chem. 71, 386 (1959)Google Scholar
  14. 14.
    I. Ugi, C. Steinbrückner, Angew. Chem. 72, 2671960 (1959)Google Scholar
  15. 15.
    J. Isaacson, Y. Kobayashi, Angew. Chem. Int. Ed. 48, 1845 (2009)CrossRefGoogle Scholar
  16. 16.
    A. Dömling, B. Beck, U. Eichelberger, S. Sakamuri, S. Menon, Q.-Z. Chen, Y. Lu, L.A. Wessjohann, Angew. Chem. Int. Ed. 45, 7235 (2006)CrossRefGoogle Scholar
  17. 17.
    M.J. Thompson, B. Chen, J. Org. Chem. 74, 7084 (2009)CrossRefGoogle Scholar
  18. 18.
    W. Erb, J.-P. Neuville, L. Zhu, J. Org. Chem. 74, 3109 (2009)CrossRefGoogle Scholar
  19. 19.
    D.G. Riveraa, L.A. Wessjohann, J. Am. Chem. Soc. 131, 3721 (2009)CrossRefGoogle Scholar
  20. 20.
    D. Coffinier, L. El Kaim, L. Grimaud, Org. Lett. 11, 995 (2009)CrossRefGoogle Scholar
  21. 21.
    L.A. Wessjohann, D.G. Rivera, O.E. Vercillo, Chem. Rev. 109, 796 (2009)CrossRefGoogle Scholar
  22. 22.
    G. Cuny, M. Bois-Choussy, J. Zhu, J. Am. Chem. Soc. 126, 14475 (2004)CrossRefGoogle Scholar
  23. 23.
    U.K. Sharma, N. Sharma, D.D. Vachhani, E.V. Van der Eycken, Chem. Soc. Rev. 44, 1836 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Aygun, U. Pindur, Curr. Med. Chem. 10, 1113 (2003)CrossRefGoogle Scholar
  25. 25.
    F.R. deSa´Alves, E.J. Barreiro, C.A. Fraga, Med. Chem. 9, 782 (2009)Google Scholar
  26. 26.
    M. Ishikura, K. Yamada, T. Abe, Nat. Prod. Rep. 27, 1630 (2010)CrossRefGoogle Scholar
  27. 27.
    R.J. Sundberg, The Chemistry of Indoles (Academic Press, New York, 1970)Google Scholar
  28. 28.
    R.J. Sundberg, in Comprehensive Heterocyclic Chemistry, ed. by A.R. Katritzky, C.W. Rees (Pergamon Press, Oxford, 1984), Vol. 4Google Scholar
  29. 29.
    J.A. Joule, E.J. Thomas, ed., Science of Synthesis, Houben-Weyl Methods of Molecular Transformations, vol. 10 (George Thieme Verlag, Stuttgart, 2000), Chap. 10Google Scholar
  30. 30.
    G.W. Gribble, in Comprehensive Heterocyclic Chemistry II, vol. 2, ed. by A.R. Katritzky, C.W. Ress, E.F.V. Scriven, C.W. Bird (Pergamon Press, Oxford, 1996), p. 207CrossRefGoogle Scholar
  31. 31.
    R.J. Sundberg, Indoles, (Academic Press, London, 1996)Google Scholar
  32. 32.
    D. Zhou, P. Zhou, D.A. Evrard, K. Meagher, M. Webb, B.L. Harrison, D.M. Huryn, J. Golembieski, G.A. Hornby, L.E. Schechter, D.L. Smith, T.H. Andree, R.E. Mewshaw, Bioorg. Med. Chem. 16, 6707 (2008)CrossRefGoogle Scholar
  33. 33.
    J.D. Williams, S.T. Nguyen, S. Gu, X. Ding, M.M. Butler, T.F. Tashjian, T.J. Opperman, T.L. Bowlin, R.G. Panchal, S. Bavari, N.P. Peet, D.T. Moir, Bioorg. Med. Chem. Lett. 21, 7790 (2013)CrossRefGoogle Scholar
  34. 34.
    M.Z. Zhang, Q. Chen, G.F. Yang, Eur. J. Med. Chem. 89, 421 (2015)CrossRefGoogle Scholar
  35. 35.
    M. Shiri, Chem. Rev. 112, 3508 (2012)CrossRefGoogle Scholar
  36. 36.
    M.M. Heravi, T. Alishiri, Adv. Heterocycl. Chem. 113, 1 (2014)CrossRefGoogle Scholar
  37. 37.
    M.M. Heravi, B. Talaei, Adv. Heterocycl. Chem. 113, 143 (2014)CrossRefGoogle Scholar
  38. 38.
    M.M. Heravi, S. Khaghaninejad, M. Mostofi, Adv. Heterocycl. Chem. 112, 1 (2014)CrossRefGoogle Scholar
  39. 39.
    M.M. Heravi, S. Khaghaninejad, N. Nazari, Adv. Heterocycl. Chem. 112, 183 (2014)CrossRefGoogle Scholar
  40. 40.
    M.M. Heravi, B. Talaei, Adv. Heterocycl. Chem. 114, 147 (2015)CrossRefGoogle Scholar
  41. 41.
    M.M. Heravi, V.F. Vavsari, Adv. Heterocycl. Chem. 114, 77 (2015)CrossRefGoogle Scholar
  42. 42.
    M.M. Heravi, V. Zadsirjan, Adv. Heterocycl. Chem. 117, 261 (2015)CrossRefGoogle Scholar
  43. 43.
    M.M. Heravi, B. Talaei, Adv. Heterocycl. Chem. 118, 195 (2016)CrossRefGoogle Scholar
  44. 44.
    M. Shiri, M. Ranjbar, Z. Yasaei, F. Zamanian, B. Notash, Org. Biomol. Chem. 15, 10073 (2017)CrossRefGoogle Scholar
  45. 45.
    M. Shiri, Z. Faghihi, H.A. Oskouei, M.M. Heravi, B. Notash, Sh. Fazelzadeh, RSC Adv. 6, 92235 (2016)CrossRefGoogle Scholar
  46. 46.
    S. Sadjadi, M.M. Heravi, N. Nazari, RSC Adv. 6, 53203 (2016)CrossRefGoogle Scholar
  47. 47.
    F. Nemati, M.M. Heravi, A. Elhampour, RSC Adv. 5, 45775 (2015)CrossRefGoogle Scholar
  48. 48.
    M.M. Heravi, E. Hashemi, Y.S. Beheshtiha, K. Kamjou, M. Toolabi, N. Hosseintash, J. Mol. Catal. A Chem. 392, 173 (2014)CrossRefGoogle Scholar
  49. 49.
    M.M. Heravi, F. Mousavizadeh, N. Ghobadi, M. Tajbakhsh, Tetrahedron Lett. 55, 1226 (2014)CrossRefGoogle Scholar
  50. 50.
    M.M. Heravi, S. Moghimi, Tetrahedron Lett. 53, 392 (2012)CrossRefGoogle Scholar
  51. 51.
    M.M. Heravi, S. Sadjadi, N. Mokhtari Haj, H.A. Oskooie, F.F. Bamoharram, Catal. Commun. 10, 1643 (2009)CrossRefGoogle Scholar
  52. 52.
    M.M. Heravi, M. Daraie, Molecules 21, 441 (2016)CrossRefGoogle Scholar
  53. 53.
    A. Rezvanian, M.M. Heravi, Z. Shaabani, M. Tajbakhsh, Tetrahedron 73, 2017 (2009)Google Scholar
  54. 54.
    M. Shiri, Z. Bozorgpour-Savadjani, J. Iran. Chem. Soc. 12, 389 (2015)CrossRefGoogle Scholar
  55. 55.
    M. Shiri, S.Z. Mirpour-Marzoni, Z. Bozorgpour-Savadjani, B. Soleymanifard, H.G. Kruger, Monatsh. Chem. 145, 1947 (2014)CrossRefGoogle Scholar
  56. 56.
    S.M. hiri, B. Farajpour, Z. Bozorgpour-Savadjani, S.A. Shintre, N.A. Koorbanally, H.G. Kruger, B. Notash, Tetrahedron 71, 5531 (2015)CrossRefGoogle Scholar
  57. 57.
    B. Soleymanifard, M.M. Heravi, M. Shiri, M.A. Zolfigol, M. Rafiee, H.G. Kruger, T. Naicker, F. Rasekhmanesh, Tetrahedron Lett. 53, 3546 (2012)CrossRefGoogle Scholar
  58. 58.
    V. Zadsirjan, M. Shiri, M.M. Heravi, T. Hosseinnejad, S.A. Shintre, N.A. Koorbanally, Res. Chem. Intermed. 43, 2119 (2017)CrossRefGoogle Scholar
  59. 59.
    K. Maruoka, M. Akakura, S. Saito, T. Ooi, H. Yamamoto, J. Am. Chem. Soc. 116, 6153 (1994)CrossRefGoogle Scholar
  60. 60.
    H.J. Zhu, Organic Stereochemistry: Experimental and Computational Methods (2015), p. 163Google Scholar
  61. 61.
    P.J. Stephens, N. Harada, Chirality 22, 229 (2010)Google Scholar
  62. 62.
    S.S. Makhathini, S.K. Das, T. Singh, P.I. Arvidsson, H.G. Kruger, H. Gunosewoyo, T. Govender, T. Naicker, Arkivoc 3, 134 (2016)Google Scholar
  63. 63.
    G. Scalmani, M.J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, V. Barone, J. Chem. Phys. 124, 94107 (2006)CrossRefGoogle Scholar
  64. 64.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 98 (Revision A.1). (Gaussian, Inc., Pittsburgh PA, 1998)Google Scholar
  65. 65.
    R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989)Google Scholar
  66. 66.
    R.M. Dickson, A.D. Becke, J. Phys. Chem. 100, 16105 (1196)Google Scholar
  67. 67.
    K. Wolinski, J.F. Hilton, P.J. Pulay, J. Am. Chem. Soc. 112, 825 (1990)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of ChemistryAlzahra UniversityTehranIran
  2. 2.School of Chemistry and PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations