Advertisement

In situ synthesis of nanocomposite materials based on modified-mesoporous silica MCM-41 and methyl methacrylate for copper (II) adsorption from aqueous solution

  • Gholamhossein MohammadnezhadEmail author
  • Parisa Moshiri
  • Mohammad Dinari
  • Frank Steiniger
Original Paper
  • 10 Downloads

Abstract

In this study, amine-modified MCM-41/poly(methyl methacrylate) nanocomposites (m-MCM-41/PMMA NCs) were fabricated through in situ polymerization method and ultrasonic irradiation technique. The as-prepared nanocomposites were utilized for adsorption of Cu2+ ions from aqueous media. Physico-chemical properties of m-MCM-41/PMMA NCs were studied by thermogravimetric analysis (TGA), transmission and scanning electron microscopes (TEM and SEM), small angle X-ray scattering (SAXS), and Fourier transform infrared (FT-IR) spectroscopy. Based on analysis data, 2 wt% NC was selected for adsorption studies and the pH effect, contact time, and initial concentration of metal ions was investigated. The adsorption mechanism and kinetics were evaluated using three kinetic models namely pseudo-second-order, Elovich, and intraparticle diffusion. In addition, the adsorptive performance of the selected NC was investigated by two common isotherm models namely Langmuir and Freundlich. Kinetics and isotherm equilibrium data showed acceptable fitting with the pseudo-second-order and Langmuir model, respectively. The maximum value of adsorption capacity toward copper(II) ions was found to be 41.5 mg g−1 (pH = 4, adsorbent dose 10 mg, temperature 25 °C, stirring speed 180 rpm, and time 140 min).

Keywords

Nanocomposites Mesoporous Poly(methyl methacrylate) Copper (II) removal Adsorption isotherms 

Notes

Acknowledgements

This work was supported partially by the Research Affairs Division of Isfahan University of Technology (IUT).

References

  1. 1.
    G. Guo, F. Wu, F. Xie, R. Zhang, Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. J. Environ. Sci. 24, 410–418 (2012)Google Scholar
  2. 2.
    M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J. Hazard. Mater. 211, 317–331 (2012)Google Scholar
  3. 3.
    F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 407–418 (2011)Google Scholar
  4. 4.
    M. Najafi, Y. Yousefi, A.A. Rafati, Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. Sep. Purif. Technol. 85, 193–205 (2012)Google Scholar
  5. 5.
    H. Wang, C. Na, Binder-free carbon nanotube electrode for electrochemical removal of chromium. ACS Appl. Mater. Interfaces 6, 20309–20316 (2014)Google Scholar
  6. 6.
    E. Eren, B. Afsin, Removal of basic dye using raw and acid activated bentonite samples. J. Hazard. Mater. 166, 830–835 (2009)Google Scholar
  7. 7.
    A.T. Paulino, L.A. Belfiore, L.T. Kubota, E.C. Muniz, V.C. Almeida, E.B. Tambourgi, Effect of magnetite on the adsorption behavior of Pb(II), Cd(II), and Cu(II) in chitosan-based hydrogels. Desalination 275, 187–196 (2011)Google Scholar
  8. 8.
    T. Phuengprasop, J. Sittiwong, F. Unob, Removal of heavy metal ions by iron oxide coated sewage sludge. J. Hazard. Mater. 186, 502–507 (2011)Google Scholar
  9. 9.
    A.C. Balazs, T. Emrick, T.P. Russell, Nanoparticle polymer composites: where two small worlds meet. Science 314, 1107–1110 (2006)Google Scholar
  10. 10.
    E. Lancelle-Beltran, P. Prené, C. Boscher, P. Belleville, P. Buvat, C. Sanchez, All-solid-state dye-sensitized nanoporous TiO2 hybrid solar cells with high energy-conversion efficiency. Adv. Mater. 18, 2579–2582 (2006)Google Scholar
  11. 11.
    C. Sanchez, B. Julián, P. Belleville, M. Popall, Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005)Google Scholar
  12. 12.
    M.J. MacLachlan, I. Manners, G.A. Ozin, New(inter) faces: polymers and inorganic materials. Adv. Mater. 12, 675–681 (2000)Google Scholar
  13. 13.
    G.A. Ozin, Nanochemistry: synthesis in diminishing dimensions. Adv. Mater. 4, 612–649 (1992)Google Scholar
  14. 14.
    S.-C. Chang, J. Bharathan, Y. Yang, R. Helgeson, F. Wudl, M.B. Ramey, J.R. Reynolds, Dual-color polymer light-emitting pixels processed by hybrid inkjet printing. Appl. Phys. Lett. 73, 2561–2563 (1998)Google Scholar
  15. 15.
    H. Sirringhaus, T. Kawase, R. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. Woo, High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000)Google Scholar
  16. 16.
    T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, R.H. Friend, Inkjet printing of polymer thin film transistors. Thin Solid Films 438, 279–287 (2003)Google Scholar
  17. 17.
    Y. Xia, R.H. Friend, Controlled phase separation of polyfluorene blends via inkjet printing. Macromolecules 38, 6466–6471 (2005)Google Scholar
  18. 18.
    J. Dijksman, P. Duineveld, M. Hack, A. Pierik, J. Rensen, J.-E. Rubingh, I. Schram, M. Vernhout, Precision ink jet printing of polymer light emitting displays. J. Mater. Chem. 17, 511–522 (2007)Google Scholar
  19. 19.
    B.J. de Gans, P.C. Duineveld, U.S. Schubert, Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16, 203–213 (2004)Google Scholar
  20. 20.
    E. Tekin, P.J. Smith, S. Hoeppener, A.M. van den Berg, A.S. Susha, A.L. Rogach, J. Feldmann, U.S. Schubert, Inkjet printing of luminescent CdTe nanocrystal–polymer composites. Adv. Funct. Mater. 17, 23–28 (2007)Google Scholar
  21. 21.
    V. Marin, E. Holder, R. Hoogenboom, E. Tekin, U.S. Schubert, Light-emitting iridium (III) and ruthenium (II) polypyridyl complexes containing quadruple hydrogen-bonding moieties, Dalton Trans. 10, 1636–1644 (2006)Google Scholar
  22. 22.
    M.A. Philip, U. Natarajan, R. Nagarajan, Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites. Adv. Nano Res. 2, 121–133 (2014)Google Scholar
  23. 23.
    P. Acar, Bozkurt, Sonochemical green synthesis of Ag/graphene nanocomposite. Ultrason. Sonochem. 35, 397–404 (2017)Google Scholar
  24. 24.
    E.I. Unuabonah, A. Taubert, Clay–polymer nanocomposites (CPNs): adsorbents of the future for water treatment. Appl. Clay Sci. 99, 83–92 (2014)Google Scholar
  25. 25.
    B. Samiey, C.-H. Cheng, J. Wu, Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: a review. Materials 7, 673–726 (2014)Google Scholar
  26. 26.
    M. Dinari, G. Mohammadnezhad, R. Soltani, Fabrication of poly (methyl methacrylate)/silica KIT-6 nanocomposites via in situ polymerization approach and their application for removal of Cu 2+ from aqueous solution. RSC Adv. 6, 11419–11429 (2016)Google Scholar
  27. 27.
    G. Mohammadnezhad, M. Dinari, R. Soltani, The preparation of modified boehmite/PMMA nanocomposites by in situ polymerization and the assessment of their capability for Cu 2+ ion removal. New J. Chem. 40, 3612–3621 (2016)Google Scholar
  28. 28.
    F.-A. Zhang, D.-K. Lee, T.J. Pinnavaia, PMMA/mesoporous silica nanocomposites: effect of framework structure and pore size on thermomechanical properties. Polym. Chem. 1, 107–113 (2010)Google Scholar
  29. 29.
    Z.A. ALOthman, A review: fundamental aspects of silicate mesoporous materials. Materials 5, 2874–2902 (2012)Google Scholar
  30. 30.
    B. Naik, N.N. Ghosh, A review on chemical methodologies for preparation of mesoporous silica and alumina based materials. Recent Patents Nanotechnol. 3, 213–224 (2009)Google Scholar
  31. 31.
    A. Heidari, H. Younesi, Z. Mehraban, Removal of Ni (II), Cd (II), and Pb (II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chem. Eng. J. 153, 70–79 (2009)Google Scholar
  32. 32.
    N. Vadia, S. Rajput, Mesoporous material, MCM-41: a new drug carrier. Asian J. Pharm. Clin. Res. 4, 44–53 (2011)Google Scholar
  33. 33.
    X.S. Zhao, G. Lu, G.J. Millar, Advances in mesoporous molecular sieve MCM-41. Ind. Eng. Chem. Res. 35, 2075–2090 (1996)Google Scholar
  34. 34.
    S. Mallakpour, E. Khadem, Facile and cost-effective preparation of PVA/modified calcium carbonate nanocomposites via ultrasonic irradiation: application in adsorption of heavy metal and oxygen permeation property. Ultrason. Sonochem. 39, 430–438 (2017)Google Scholar
  35. 35.
    Issue, Information, Polym. Compos. 39, 1–4 (2018)Google Scholar
  36. 36.
    M. Laghaei, M. Sadeghi, B. Ghalei, M. Dinari, The effect of various types of post-synthetic modifications on the structure and properties of MCM-41 mesoporous silica. Prog. Org. Coat. 90, 163–170 (2016)Google Scholar
  37. 37.
    R. Liu, Y. Shi, Y. Wan, Y. Meng, F. Zhang, D. Gu, Z. Chen, B. Tu, D. Zhao, Triconstituent co-assembly to ordered mesostructured polymer–silica and carbon–silica nanocomposites and large-pore mesoporous carbons with high surface areas. J. Am. Chem. Soc. 128, 11652–11662 (2006)Google Scholar
  38. 38.
    S. Azizian, S. Eris, L.D. Wilson, Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution. Chem. Phys. 513, 99–104 (2018)Google Scholar
  39. 39.
    M. Mureseanu, A. Reiss, I. Stefanescu, E. David, V. Parvulescu, G. Renard, V. Hulea, Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere 73, 1499–1504 (2008)Google Scholar
  40. 40.
    Y. Jiang, Q. Gao, H. Yu, Y. Chen, F. Deng, Intensively competitive adsorption for heavy metal ions by PAMAM-SBA-15 and EDTA-PAMAM-SBA-15 inorganic–organic hybrid materials. Microporous Mesoporous Mater. 103, 316–324 (2007)Google Scholar
  41. 41.
    A. Shahbazi, H. Younesi, A. Badiei, Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column. Chem. Eng. J. 168, 505–518 (2011)Google Scholar
  42. 42.
    H. Yang, R. Xu, X. Xue, F. Li, G. Li, Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal. J. Hazard. Mater. 152, 690–698 (2008)Google Scholar
  43. 43.
    G. Mohammadnezhad, R. Soltani, S. Abad, M. Dinari, A novel porous nanocomposite of aminated silica MCM-41 and nylon-6: isotherm, kinetic, and thermodynamic studies on adsorption of Cu(II) and Cd(II). J. Appl. Polym. Sci. 134, 45383 (2017)Google Scholar
  44. 44.
    X. Xue, F. Li, Removal of Cu(II) from aqueous solution by adsorption onto functionalized SBA-16 mesoporous silica. Microporous Mesoporous Mater. 116, 116–122 (2008)Google Scholar
  45. 45.
    S. Wu, F. Li, R. Xu, S. Wei, G. Li, Synthesis of thiol-functionalized MCM-41 mesoporous silicas and its application in Cu(II), Pb(II), Ag(I), and Cr(III) removal. J. Nanopart. Res. 12, 2111–2124 (2010)Google Scholar
  46. 46.
    G. Mohammadnezhad, S. Abad, R. Soltani, M. Dinari, Study on thermal, mechanical and adsorption properties of amine-functionalized MCM-41/PMMA and MCM-41/PS nanocomposites prepared by ultrasonic irradiation. Ultrason. Sonochem. 39, 765–773 (2017)Google Scholar
  47. 47.
    M. Dinari, G. Mohammadnezhad, R. Soltani, Fabrication of poly(methyl methacrylate)/silica KIT-6 nanocomposites via in situ polymerization approach and their application for removal of Cu2+ from aqueous solution. RSC Adv. 6, 11419–11429 (2016)Google Scholar
  48. 48.
    Y. S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater. 136(3), 681–689 (2006)Google Scholar
  49. 49.
    S. Azizian, Kinetic models of sorption: a theoretical analysis. J. Colloid Interface Sci. 276(1), 47–52 (2004)Google Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of ChemistryIsfahan University of TechnologyIsfahanIslamic Republic of Iran
  2. 2.Center for Electron MicroscopyJena University HospitalJenaGermany

Personalised recommendations