Advertisement

Isinglass–palladium as collagen peptide–metal complex: a highly efficient heterogeneous biocatalyst for Suzuki cross-coupling reaction in water

  • Zahra Dolatkhah
  • Shahrzad JavanshirEmail author
  • Ayoob BazgirEmail author
Original Paper
  • 4 Downloads

Abstract

The class of bio-nanocatalysts (BNCs) is an evolving innovation that synergistically assimilates advanced nanotechnology with biotechnology. BNCs promote green processes due to their low consumption of chemicals and the absence of toxic by-products. Isinglass (IG), from the Dutch huizenblaas (sturgeon bladder), containing approximately 98% protein collagen, is used to support the immobilization of palladium (Pd) nanoparticles. This process leads to Pd/IG composite, a new class of heterogeneous collagen peptides–metal BNCs that exhibit high catalytic activity and reusability for ligand-free Suzuki coupling reaction in water. Additionally, these BNCs are obviously active in the cross-coupling reaction between acid chloride and arylboronic acid, producing a high yield of the desired ketones. The synthesized BNCs are well-characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma, and transmission electron microscopy.

Keywords

Heterogeneous catalysis Bio-nanocatalysts Pd(II) immobilized on isinglass Suzuki coupling Sustainable chemistry 

Notes

Acknowledgements

The authors gratefully acknowledge the support of the Research Council of Iran University of Science and Technology, Tehran, Iran.

Supplementary material

13738_2019_1625_MOESM1_ESM.doc (450 kb)
Supplementary material 1 (DOC 450 KB)

References

  1. 1.
    A. Biffis, P. Centomo, A. Del Zotto, M. Zecca, Chem. Rev. 118, 2249 (2018)CrossRefGoogle Scholar
  2. 2.
    C. Torborg, M. Beller, Adv. Synth. Catal. 351, 3027 (2009)CrossRefGoogle Scholar
  3. 3.
    N. Miyaura, A. Suzuki, Chem. Rev. 95, 2457 (1995)CrossRefGoogle Scholar
  4. 4.
    D. Balcells, A. Nova, ACS Catal. 8, 3499 (2018)CrossRefGoogle Scholar
  5. 5.
    R.J. White, R. Luque, V.L. Budarin, J.H. Clark, D.J. Macquarrie, Chem. Soc. Rev. 38, 481 (2009)CrossRefGoogle Scholar
  6. 6.
    A. Kirschning, W. Solodenko, K. Mennecke, Chem. Eur. J. 12, 5972 (2006)CrossRefGoogle Scholar
  7. 7.
    J.G.D. Vries, in Selective nanocatalysts and nanoscience: concepts for heterogeneous and homogeneous catalysis, ed. by A. Zecchina, S. Bordiga, E. Groppo. When Does Catalysis with Transition Metal Complexes Turn into Catalysis by Nanoparticles? (Wiley, Weinheim, 2011), p. 73CrossRefGoogle Scholar
  8. 8.
    W. Zhang, D. Wang, R. Yan, in Selective nanocatalysts and nanoscience: concepts for heterogeneous and homogeneous catalysis, ed. by A. Zecchina, S. Bordiga, E. Groppo Supported Nanoparticles and Selective Catalysis: A Surface Science Approach (Wiley, Weinheim, 2011), p. 29CrossRefGoogle Scholar
  9. 9.
    F. Yang, S. Dong, C. Wang, Y. Li, RSC Adv. 6, 52620 (2016)CrossRefGoogle Scholar
  10. 10.
    R. Ciriminna, P.D. Carà, M. Sciortino, M. Pagliaro, Adv. Synth. Catal. 353, 677 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Rostamnia, T. Rahmani, H. Xin, Ind. Eng. Chem. Res. 32, 218 (2015)CrossRefGoogle Scholar
  12. 12.
    O. Synooka, F. Kretschmer, M.D. Hager, M. Himmerlich, S. Krischok, D. Gehrig, F.D.R Laquai, U.S. Schubert, G. Gobsch, H. Hoppe, ACS Appl. Mater. Interfaces 6, 11068 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 102, 1359 (2002)CrossRefGoogle Scholar
  14. 14.
    P. Ghosh, B. Ganguly, S. Das, Appl. Organomet. Chem. 32, e4173 (2018)CrossRefGoogle Scholar
  15. 15.
    Y. Liu, S. Pujals, P.J. Stals, T. Paulöhrl, S.I. Presolski, E. Meijer, L. Albertazzi, A.R. Palmans, J. Am. Chem. Soc. 140, 3423 (2018)CrossRefGoogle Scholar
  16. 16.
    B. Lakshminarayana, J. Chakraborty, G. Satyanarayana, C. Subrahmanyam, RSC Adv. 8, 21030 (2018)CrossRefGoogle Scholar
  17. 17.
    A. Okano, A. Nakayama, K. Wu, E.A. Lindsey, A.W. Schammel, Y. Feng, K.C. Collins, D.L. Boger, J. Am. Chem. Soc. 137, 3693 (2015)CrossRefGoogle Scholar
  18. 18.
    O. Baudoin, A. Décor, M. Cesario, F. Guéritte, Synlett 2003, 2009 (2003)Google Scholar
  19. 19.
    G.P. McGlacken, L.M. Bateman, Chem. Soc. Rev. 38, 2447 (2009)CrossRefGoogle Scholar
  20. 20.
    G. Xu, W. Fu, G. Liu, C.H. Senanayake, W. Tang, J. Am. Chem. Soc. 136, 570 (2013)CrossRefGoogle Scholar
  21. 21.
    A. Suzuki, Angew. Chem. Int. Ed. 50, 6722 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Parveen, M.S. Shah, S. Zaib, T. Gul, K.M. Khan, J. Iqbal, A. Hassan, Bioorg. Chem. 76, 166 (2018)CrossRefGoogle Scholar
  23. 23.
    S. Benmahdjoub, N. Ibrahim, B. Benmerad, M. Alami, S. Messaoudi, Org. Lett. 20, 4067 (2018)CrossRefGoogle Scholar
  24. 24.
    S.J. Sabounchei, M. Ahmadi, M. Panahimehr, F.A. Bagherjeri, Z. Nasri, J. Mol. Catal. A Chem. 383, 249 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Lamblin, L. Nassar-Hardy, J.C. Hierso, E. Fouquet, F.X. Felpin, Adv. Synth. Catal. 352, 33 (2010)CrossRefGoogle Scholar
  26. 26.
    M. Esmaeilpour, S. Zahmatkesh, N. Fahimi, M. Nosratabadi, Appl. Organomet. Chem. 32, e4302 (2018)CrossRefGoogle Scholar
  27. 27.
    D.A. Alonso, A. Baeza, R. Chinchilla, C. Gómez, G. Guillena, I.M. Pastor, D.J. Ramón, Catalysts 8, 202 (2018)CrossRefGoogle Scholar
  28. 28.
    S. Rostamnia, E. Doustkhah, B. Zeynizadeh, Microporous Mesoporous Mater. 222, (2016)Google Scholar
  29. 29.
    J. Song, B. Han, Natl. Sci. Rev. 2, 255 (2015)CrossRefGoogle Scholar
  30. 30.
    V. Calò, A. Nacci, A. Monopoli, A. Fornaro, L. Sabbatini, N. Cioffi, N. Ditaranto, Organometallics 23, 5154 (2004)CrossRefGoogle Scholar
  31. 31.
    A. Khalafi-Nezhad, F. Panahi, Green Chem. 13, 2408 (2011)CrossRefGoogle Scholar
  32. 32.
    T. Hennebel, H. Simoen, P. Verhagen, W. De Windt, J. Dick, C. Weise, F. Pietschner, N. Boon, W. Verstraete, Environ. Chem. Lett. 9, 417 (2011)CrossRefGoogle Scholar
  33. 33.
    A. Khazaei, S. Rahmati, Z. Hekmatian, S. Saeednia, J. Mol. Catal. A Chem. 372, 160 (2013)CrossRefGoogle Scholar
  34. 34.
    Q. Yang, Z. Quan, B. Du, S. Wu, P. Li, Y. Sun, Z. Lei, X. Wang, Catal. Sci. Technol. 5, 4522 (2015)CrossRefGoogle Scholar
  35. 35.
    Z. Lu, J.B. Jasinski, S. Handa, G.B. Hammond, Org. Biomol. Chem. 16, 2748 (2018)CrossRefGoogle Scholar
  36. 36.
    M. Tukhani, F. Panahi, A. Khalafi-Nezhad, ACS Sustain. Chem. Eng. 6, 1456 (2017)CrossRefGoogle Scholar
  37. 37.
    S. Javanshir, N.S. Pourshiri, Z. Dolatkhah, M. Farhadnia, Monatsh. Chem. 148, 703 (2017)CrossRefGoogle Scholar
  38. 38.
    D. Hickman, T. Sims, C. Miles, A. Bailey, M. De Mari, M. Koopmans, J. Biotechnol. 79, 245 (2000)CrossRefGoogle Scholar
  39. 39.
    A. Leach, J. Inst. Brew. 73, 8 (1967)CrossRefGoogle Scholar
  40. 40.
    J. Eastoe, Biochem. J. 65, 363 (1957)CrossRefGoogle Scholar
  41. 41.
    A.S. Parmar, F. Xu, D.H. Pike, S.V. Belure, N.F. Hasan, K.E. Drzewiecki, D.I. Shreiber, V. Nanda, Biochemistry 54, 4987 (2015)CrossRefGoogle Scholar
  42. 42.
    Z. Dolatkhah, S. Javanshir, A. Bazgir, A. Mohammadkhani, Chem. Sel. 3, 5486 (2018)Google Scholar
  43. 43.
    E. Pourian, S. Javanshir, Z. Dolatkhah, S. Molaei, A. Maleki, ACS Omega 3, 5012 (2018)CrossRefGoogle Scholar
  44. 44.
    Z. Ai, L. Zhang, S. Lee, W. Ho, J. Phys. Chem. C 113, 20896 (2009)CrossRefGoogle Scholar
  45. 45.
    C.F. Lima, A.S. Rodrigues, V.L. Silva, A.M. Silva, L.M. Santos, ChemCatChem 6, 1291 (2014)CrossRefGoogle Scholar
  46. 46.
    P.J. Dyson, P.G. Jessop, Catal. Sci. Technol. 6, 3302 (2016)CrossRefGoogle Scholar
  47. 47.
    H. Ma, W. Cao, Z. Bao, Z.-Q. Lei, Catal. Sci. Technol. 2, 2291 (2012)CrossRefGoogle Scholar
  48. 48.
    W. Zhou, Y. Zhou, X. Zhang, B. Zeng, Chem. J. Chin. U 37, 669 (2016)CrossRefGoogle Scholar
  49. 49.
    A. Khalafi-Nezhad, F. Panahi, J. Organomet. Chem. 717, 141 (2012)CrossRefGoogle Scholar
  50. 50.
    E. Sin, S.-S. Yi, Y.-S. Lee, J. Mol. Catal. A Chem. 315, 99 (2010)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Heterocyclic Chemistry Research Laboratory, Department of ChemistryIran University of Science and TechnologyTehranIran
  2. 2.Department of ChemistryShahid Beheshti University G.C.TehranIran

Personalised recommendations