Sonochemical fabrication of Pd/TiO2-nanotubes/Ti plate as a green catalyst for oxidation of alkylarenes and benzyl alcohols

  • Sajjad KeshipourEmail author
  • Masoud Faraji
  • Parisa Aboozari Asl
Original Paper


A facile and fast strategy has been employed to fabricate Pd nanoparticles supported on TiO2 nanotubes/Ti plate via sonochemical deposition. Microstructure studies showed the homogeneous deposition of Pd nanoparticles on the walls of TiO2 nanotubes/Ti plate. The synthesized plate was applied as a novel catalyst for the oxidation of benzyl alcohol and ethylbenzene derivatives. The results of catalytic experiments demonstrated that the modified plate was an efficient green catalyst for the oxidation of benzyl alcohols to benzoic acid derivatives in H2O. The oxidation of alkylarenes was carried out in EtOH:H2O (1:1) ended up with the formation of the corresponding ketone as the sole product. High yields and excellent selectivities were obtained for the oxidation reactions in green solvents using green oxidant. Superior catalytic activity, easy catalyst recovery, and reusability of the catalyst are some advantages of the modified PdNPs/TiO2 nanotubes/Ti plate, indicating a potential application of the catalyst in the industrial oxidation reactions.


Titania Nanotubes Catalyst Oxidation Heterogeneous catalyst 



The authors wish to express thanks to the office of vice chancellor of research of Urmia University for the financial support.


  1. 1.
    K.B. Wiberg, Oxidation in Organic Chemistry, Part A (Academic Press, New York, 1965)Google Scholar
  2. 2.
    W.S. Trahanovsky, Oxidation in Organic Chemistry, Part B, Ed. (Academic Press, New York, 1973)Google Scholar
  3. 3.
    L.J. Chinn, Selection of Oxidants in Synthesis (Marcel Dekker, New York, 1971)Google Scholar
  4. 4.
    M. Carmelli, S. Rozen, J. Org. Chem. 71, 4585–4589 (2006)CrossRefGoogle Scholar
  5. 5.
    S.L. Jain, B. Sain, Angew. Chem. Int. 42, 1265–1267 (2003)CrossRefGoogle Scholar
  6. 6.
    S. Suresh, R. Joshep, B. Jayachandran, Tetrahedron 51, 11305–11318 (1995)CrossRefGoogle Scholar
  7. 7.
    O. Verho, Transition Metal-Catalyzed Redox Reactions (Stockholm University, Stockholm, 2013)Google Scholar
  8. 8.
    W.R. Moser, D.W. Slocum, Homogeneous Transition Metal Catalyzed Reactions (American Chemical Society, Washington, 1992)CrossRefGoogle Scholar
  9. 9.
    Z. Shi, C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev. 41, 3381–3430 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Wang, H. Chen, Z. Hu, M. Yao, Y. Li, Catal. Rev. Sci. Eng. 57, 79–144 (2015)CrossRefGoogle Scholar
  11. 11.
    J.S. Rafelt, J.H. Clark, Catal. Today 31, 33–44 (2000)CrossRefGoogle Scholar
  12. 12.
    J.E. Backvall, Modern Oxidation Methods (VCH-Wiley, Weinheim, 2004)CrossRefGoogle Scholar
  13. 13.
    J. Muzart, Tetrahedron 59, 5789–5816 (2003)CrossRefGoogle Scholar
  14. 14.
    K. Mori, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 126, 10657–10666 (2004)CrossRefGoogle Scholar
  15. 15.
    P. Zhang, Y. Gong, H. Li, Z. Chen, Y. Wang, Nat. Commun. 4, 1593 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Faraji, M. Amini, A. Pourvahabi Anbari, Catal. Commun. 76, 72–75 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Keshipour, N. Kalam, Khalteh, Appl. Organometal. Chem. 30, 653–656 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Keshipour, M. Khezerloo, J. Iran. Chem. Soc. 14, 1107–1112 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Keshipour, M. Khezerloo, Appl. Organometal. Chem. 32, e4255 (2018)CrossRefGoogle Scholar
  20. 20.
    S. Keshipour, S. Nadervand, RSC Adv. 5, 47617–47621 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Mizukoshi, E. Takagi, H. Okuno, R. Oshima, Y. Maeda, Y. Nagata, Ultrason. Sonochem. 8, 1–6 (2001)CrossRefGoogle Scholar
  22. 22.
    K. Okitsu, M. Iwatani, K. Okano, M.H. Uddin, R. Nishimura, Ultrason. Sonochem. 31, 456–462 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Ameen, M.T. Azizan, A. Ramli, S. Yusup, M. Yasir, Procedia Eng. 148, 64–71 (2016)CrossRefGoogle Scholar
  24. 24.
    L.X. Zuo, L.P. Jiang, E.S. Abdel-Halim, J.J. Zhu, Ultrason. Sonochem. 35, 219–225 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Mirza-Aghayan, M. Molaee Tavana, R. Boukherroub, Catal. Commun. 69, 97–103 (2015)CrossRefGoogle Scholar
  26. 26.
    A. Nemamcha, H. Moumeni, J.L. Rehspringer, Phys. Proc. 2, 713–717 (2009)CrossRefGoogle Scholar
  27. 27.
    M. Faraji, N. Mohaghegh, Surf. Coat. Technol. 288, 144–150 (2016)CrossRefGoogle Scholar
  28. 28.
    S. Keshipour, F. Ahmadi, B. Seyyedi, Cellulose 24, 1455–1462 (2017)CrossRefGoogle Scholar
  29. 29.
    Y. Chen, H. Zheng, Z. Guo, C. Zhou, C. Wang, A. Borgna, Y. Yang, J. Catal. 283, 34–44 (2011)CrossRefGoogle Scholar
  30. 30.
    B. Wang, M. Lin, T.P. Ang, J. Chang, Y. Yang, A. Borgna, Catal. Commun. 25, 96–101 (2012)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  • Sajjad Keshipour
    • 1
    Email author
  • Masoud Faraji
    • 2
  • Parisa Aboozari Asl
    • 1
  1. 1.Department of Nanochemistry, Nanotechnology Research CenterUrmia UniversityUrmiaIran
  2. 2.Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry FacultyUrmia UniversityUrmiaIran

Personalised recommendations