Determination of triazole fungicides in environmental water by magnetic solid-phase extraction coupled with UHPLC-MS/MS

  • Peng Sun
  • Yuling Gao
  • Yongfu LianEmail author
Original Paper


A simple, rapid and environmentally friendly method was developed for the determination of triazole fungicides (TFs) in environmental water by magnetic solid-phase extraction coupled with UHPLC-MS/MS. The target analytes were quantitatively adsorbed on magnetic multi-wall carbon nanotubes (M-MWCNTs), and then magnetically isolated. After desorption with acetone, the spiked samples were analyzed by UHPLC-MS/MS under optimized conditions, which demonstrated good linearity between 0.04 and 500.0 µg L−1 with the correlation coefficient of 0.9992–0.9998, the limits of detection of 0.011–0.067 µg L−1 and the limits of quantification of 0.037–0.224 µg L−1.The accuracy of the proposed method was evaluated by measuring the recovery of the spiked samples, which ranged from 91.2 to 108.4% with the relative standard deviations from 1.0 to 7.5% for the spiked samples. The proposed method has been successfully applied to the determination of the target compounds in real environmental water samples. The results demonstrate that the developed method has great potential for the determination of TFs in water.


Magnetic solid-phase extraction Environmental water Triazole fungicides UHPLC-MS/MS 



This work was supported by Analytical Centre of Heilongjiang Bayi Agricultural University.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    P.B. Miniyar, A.A. Mahajan, S.N. Mokale, M.U. Shah, A.S. Kumar, G.U. Chaturbhuj, Arab. J. Chem. 10, 295 (2017)Google Scholar
  2. 2.
    C.Y. Tian, J. Xu, F.S. Dong, X.G. Liu, X.H. Wu, Y.Q. Zheng, Chin. J. Pestic. Sci. 18, 141 (2016)Google Scholar
  3. 3.
    J.H. Zhou, J.Y. Zhang, F.X. Li, J. Liu, J. Hazard. Mater. 308, 294 (2016)Google Scholar
  4. 4.
    M.A. Farajzadeh, S. Sheykhizadeh, P. Khorram, Food. Anal. Method 7, 1229 (2014)Google Scholar
  5. 5.
    Y.H. Zhang, Y. Zhang, Q.Y. Zhao, W.J. Chen, B.N. Jiao, Food. Anal. Method 9, 596 (2016)Google Scholar
  6. 6.
    Q.H.C. Wang, C.X. Wu, Z. Wu, Wang, J. Hazard. Mater. 185, 71 (2011)Google Scholar
  7. 7.
    R. Bordagaray, E. Garcia-Arrona, Millán, Food. Anal. Method 7, 1195 (2014)Google Scholar
  8. 8.
    H. Su, Y.L. Lin, Z. Wang, Y.L.E. Wong, X.F. Chen, T.W.D. Chan, J. Chromatogr. A 1141, 117 (2007)Google Scholar
  9. 9.
    J. Li, F.S. Dong, J. Xu, X.G. Liu, Y.B. Lia, W.L. Shan, Y.Q. Zheng, Anal. Chim. Acta 702, 127 (2011)Google Scholar
  10. 10.
    Y.B. Li, F.S. Dong, X.G. Liu, J. Xu, J. Li, Z.Q. Kong, X. Chen, X.Y. Liang, Y.Q. Zheng, J. Chromatogr. A 1224, 51 (2012)Google Scholar
  11. 11.
    R. Konášová, J.J. Dytrtová, V. Kašička, J. Chromatogr. A 1408, 243 (2015)Google Scholar
  12. 12.
    T. Tang, K. Qian, T.Y. Shi, F. Wang, J.Q. Li, Y.S. Cao, Anal. Chim. Acta 680, 26 (2010)Google Scholar
  13. 13.
    Y.L. Wu, R.X. Chen, Y. Zhu, J. Zhao, T. Yang, J. Chromatogr. B 989, 11 (2015)Google Scholar
  14. 14.
    N. Wang, M. Su, S.X. Liang, H.W. Sun Food. Chem. 199, 1 (2016)Google Scholar
  15. 15.
    M. N. Jalbani, Soylak, Ecotoxicol. Environ. Saf. 102, 174 (2014)Google Scholar
  16. 16.
    S.Q. Zhu, B.B. Chen, M. He, T. Huang, B. Hu, Talanta 171, 213 (2017)Google Scholar
  17. 17.
    P. Sun, Y.L. Gao, C. Xu, Y.F. Lian, Food. Addit. Contam. A 34, 12 (2017)Google Scholar
  18. 18.
    N.A. El Essawy, S.M. Ali, H.A. Farag, A. H. Konsowa, M. Elnouby, H. A. Hamad, Ecotoxicol. Environ Saf. 145, 57 (2017)Google Scholar
  19. 19.
    S.S. Zunngu, L.M. Madikizela, L. Chimuka, P.S. Mdluli, C.R. Chimie, C. R. Chim. 20, 585 (2017)Google Scholar
  20. 20.
    L.C. Xu, J.M. Pan, J.D. Dai, X.X. Li, H. Hang, Z.J. Cao, Y.S. Yan, J. Hazard. Mater. 48, 233–234 (2012)Google Scholar
  21. 21.
    J.P. Kumar, P.V.R.K. Ramacharyulu, G.K. Prasad, B. Singh, Appl. Clay. Sci. 116–117, 263 (2015)Google Scholar
  22. 22.
    H.R. Amiri, F.M. Saadati-Moshtaghin, A. Zonoz, Targhoo, J. Chromatogr. A 1483, 64 (2017)Google Scholar
  23. 23.
    R.R. Shan, L.G. Yan, K. Yang, Y.F. Hao, B. Du, J. Hazard. Mater. 299, 42 (2015)Google Scholar
  24. 24.
    H. Su. Y.L. Lin. Z.H. Wang. Y.L.E. Wong, T.W.D. Chan, J. Chromatogr. A 1466, 21 (2016)Google Scholar
  25. 25.
    F. Pena-Pereira, R.M.B.O. Duarte, T. Trindade, A.C. Duarte, J. Chromatogr. A 1299, 25 (2013)Google Scholar
  26. 26.
    M. Ahmadi, T. Madrakian, A. Afkhami, Anal. Chim. Acta 852, 250 (2014)Google Scholar
  27. 27.
    A.Y. Jee, M. Lee, Curr. Appl. Phys. 9, 144 (2009)Google Scholar
  28. 28.
    L.R. Kong, X.F. Lu, W.J. Zhang, J. Solid. State. Chem. 181, 628 (2008)Google Scholar
  29. 29.
    J.Y. Xue, H.C. Li, F.M. Liu, W.Q. Jiang, F. Hou, Food. Chem. 196, 867 (2016)Google Scholar
  30. 30.
    ÉA. Souza-Silva, V. Lopez-Avila, J. Pawliszyn,J. Chromatogr. A 1313, 139 (2013)Google Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Ministry of EducationHeilongjiang UniversityHarbinChina
  2. 2.Heilongjiang Bayi Agricultural UniversityDaqingChina

Personalised recommendations