Advertisement

Spectroscopic, thermodynamic and molecular docking studies on the interaction of two water-soluble asymmetric cationic porphyrins with calf thymus DNA

  • Roghayeh Aleeshah
  • Somayeh Zabihollahzadeh Samakoosh
  • Abbas EslamiEmail author
Original Paper
  • 8 Downloads

Abstract

The water-soluble cationic porphyrin, 5-(1-dodecyl pyridinium-4-yl)-10,15,20-tris(1-methylpyridinium-4-yl)-21H,23H-porphyrin tetrachloride (MDTMPyP), and its Cu(II) complex (CuMDTMPyP) have been prepared and characterized by 1H NMR, UV–visible spectroscopy and elemental analyses. The binding properties of the porphyrins with calf thymus DNA (CT-DNA) have been investigated by electrochemical, spectroscopic and molecular docking methods. These observations were further confirmed by monitoring DNA viscosity and also circular dichroism studies in the Soret region. The absorption spectrum changes of both porphyrins in Soret band region showed that they could intercalate in DNA structure. The obtained results showed that MDTMPyP has a higher affinity to CT-DNA than CuMDTMPyP. The porphyrin solutions were titrated with DNA and the UV–visible titration spectra were analyzed with multivariate curve resolution-alternating least squares (MCR-ALS) technique to obtain spectrum of porphyrin–DNA complex, and concentration profiles of free and DNA-bonded porphyrin. Then the binding constant was calculated by the combination of MCR-ALS and McGhee–von Hippel equation. Also, the thermodynamic parameters of the DNA binding process were acquired from the van’t Hoff equation at various temperatures. The positive and large values of the entropy, and enthalpy revealed that the interaction is endothermic, and the entropically driven process.

Graphical abstract

Two water soluble cationic asymmetric porphyrins have been synthesized and structurally characterized with various techniques. Their binding properties with CT-DNA have been explored by electrochemical and spectroscopic methods. The DNA binding studies offered that these porphyrins can intercalate into CT-DNA.

Keywords

Asymmetric cationic porphyrin Intercalation binding Calf thymus DNA Molecular docking Thermodynamic parameters MCR-ALS 

Notes

Acknowledgements

Financial support from the research council of the University of Mazandaran is gratefully acknowledged. This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Supplementary material

13738_2019_1609_MOESM1_ESM.doc (168 kb)
Supplementary material 1 (DOC 167 KB)

References

  1. 1.
    F. Bryden, R.W. Boyle, Adv. Organomet. Chem. 68, 141 (2016)Google Scholar
  2. 2.
    T. Jahanbin, H. Sauriat-Dorizon, P. Spearman, S. Benderbous, H. Korri-Youssoufi, Mater. Sci. Eng., C 52, 325 (2015)CrossRefGoogle Scholar
  3. 3.
    I. Baldea, R.-M. Ion, D.E. Olteanu, I. Nenu, D. Tudor, A.G. Filip, Clujul Med. 88, 175 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Chen, D. Zhao, Y. Liu, Chem. Commun. 51, 12266 (2015)CrossRefGoogle Scholar
  5. 5.
    S. Jin, P. Zhao, L.-C. Xu, M. Zheng, J.-Z. Lu, P.-L. Zhao, Q.-L. Su, H.-X. Chen, D.-T. Tang, J. Chen, Bioorg. Chem. 60, 110 (2015)CrossRefGoogle Scholar
  6. 6.
    C.R. Dass, J. Pharm. Pharmacol. 54, 3 (2002)CrossRefGoogle Scholar
  7. 7.
    B. Ruttkay-Nedecky, J. Kudr, L. Nejdl, D. Maskova, R. Kizek, V. Adam, Molecules 18, 14760 (2013)CrossRefGoogle Scholar
  8. 8.
    R.F. Pasternack, P. Garrity, B. Ehrlich, C.B. Davis, E.J. Gibbs, G. Orloff, A. Giartosio, C. Turano, Nucleic Acids Res. 14, 5919 (1986)CrossRefGoogle Scholar
  9. 9.
    D.L. Banville, L.G. Marzilli, W.D. Wilson, Biochem. Biophys. Res. Commun. 113, 148 (1983)CrossRefGoogle Scholar
  10. 10.
    T. Biver. F. Secco, M. Venturini, Coord. Chem. Rev. 252, 1163 (2008)CrossRefGoogle Scholar
  11. 11.
    P. Zhao, L.-C. Xu, J.-W. Huang, K.-C. Zheng, J. Liu, H.-C. Yu, L.-N. Ji Biophys. Chem. 134, 72 (2008)CrossRefGoogle Scholar
  12. 12.
    M.J. Carvlin, R.J. Fiel, Nucleic Acids Res. 11, 6121 (1983)CrossRefGoogle Scholar
  13. 13.
    S. Bhattacharya, G. Mandal, T. Ganguly, J. Photochem. Photobiol. B 101, 89 (2010)CrossRefGoogle Scholar
  14. 14.
    J.M. Nicoludis, S.P. Barrett, J.-L. Mergny, L.A. Yatsuny, Nucleic Acids Res. 40, 5432 (2012)CrossRefGoogle Scholar
  15. 15.
    D.H. Tjahjono, T. Akutsu, N. Yoshioka, H. Inoue, Biochim. Biophys. Acta 1472, 333 (1999)CrossRefGoogle Scholar
  16. 16.
    T. Yamamoto, D.H. Tjahjono, N. Yoshioka, H. Inoue, Bull. Chem. Soc. Jpn 76, 1947 (2003)CrossRefGoogle Scholar
  17. 17.
    D.H. Tjahjono, S. Mima, T. Akutsu, N. Yoshioka, H. Inoue, J. Inorg. Biochem. 85, 219 (2001)CrossRefGoogle Scholar
  18. 18.
    P. Kubát, K. Lang, P. Anzenbacher Jr, K. Jursíková, V. Král, B. Ehrenberg, J. Chem. Soc. Perkin Trans. 1, 933 (2000)CrossRefGoogle Scholar
  19. 19.
    J.M. Kelly, M.J. Murphy, D.J. McConnell, C. OhUigin, Nucleic Acids Res. 13, 167 (1985)CrossRefGoogle Scholar
  20. 20.
    P. Wang, L. Ren, H. He, F. Liang, X. Zhou, Z. Tan, ChemBioChem 7, 1155 (2006)CrossRefGoogle Scholar
  21. 21.
    M. Sari, J. Battioni, D. Mansuy, J. Le Pecq, Biochem. Biophys. Res. Commun. 141, 643 (1986)CrossRefGoogle Scholar
  22. 22.
    E. Reddi, M. Ceccon, G. Valduga, G. Jori, J.C. Bommer, F. Elisei, L. Latterini, U. Mazzucato, Photochem. Photobiol. 75, 462 (2002)CrossRefGoogle Scholar
  23. 23.
    G.I. Cárdenas-Jirón, L. Cortez, J. Mol. Model. 19, 2913 (2013)CrossRefGoogle Scholar
  24. 24.
    D.A. Caminos, E.N. Durantini, J. Porphyr. Phthalocyanines 9, 334 (2005)CrossRefGoogle Scholar
  25. 25.
    H. Li, O.S. Fedorova, A.N. Grachev, W.R. Trumble, G.A. Bohach, L. Czuchajowski, Biochim. Biophys. Acta 1354, 252 (1997)CrossRefGoogle Scholar
  26. 26.
    K. Hirakawa, M. Harada, S. Okazaki, Y. Nosaka, Chem. Commun. 48, 4770 (2012)CrossRefGoogle Scholar
  27. 27.
    H. Dezhampanah, A.-K. Bordbar, S. Tangestaninejad, J. Porphyr. Phthalocyanines 13, 964 (2009)CrossRefGoogle Scholar
  28. 28.
    F.C. Skrobot, I.L. Rosa, A.P.A. Marques, P.R. Martins, J. Rocha, A.A. Valente, Y. Iamamoto, J. Mol. Catal. A Chem. 237, 86 (2005)CrossRefGoogle Scholar
  29. 29.
    S. Lee, S.H. Jeon, B.-J. Kim, S.W. Han, H.G. Jang, S.K. Kim, Biophys. Chem. 92, 35 (2001)CrossRefGoogle Scholar
  30. 30.
    R.F. Pasternack, E.J. Gibbs, J.J. Villafranca, Biochemistry 22, 5409 (1983)CrossRefGoogle Scholar
  31. 31.
    M. Balaz, K. Bitsch-Jensen, A. Mammana, G.A. Ellestad, K. Nakanishi, N. Berova, Pure Appl. Chem. 79, 801 (2007)CrossRefGoogle Scholar
  32. 32.
    E. Vaishnavi, R. Renganathan, Analyst 139, 225 (2014)CrossRefGoogle Scholar
  33. 33.
    Z.-Q. Xu, B. Zhou, F.-L. Jiang, J. Dai, Y. Liu, Colloids Surf. B 110, 321 (2013)CrossRefGoogle Scholar
  34. 34.
    W. Lu, B.S.F. Band, Y. Yu, Q.G. Li, J.C. Shang, C. Wang, Y. Fang, R. Tian, L.P. Zhou, L.L. Sun, Microchim. Acta 158, 29 (2007)CrossRefGoogle Scholar
  35. 35.
    K. Yue, M. Lin, T.A. Gray, L.G. Marzilli, Inorg. Chem. 30, 3214 (1991)CrossRefGoogle Scholar
  36. 36.
    J.A. Strickland, L.G. Marzilli, W.D. Wilson, G. Zon, Inorg. Chem. 28, 4191 (1989)CrossRefGoogle Scholar
  37. 37.
    G. Dougherty, R.F. Pasternack, Biophys. Chem. 44, 11 (1992)CrossRefGoogle Scholar
  38. 38.
    F. Cui, Q. Liu, H. Luo, G. Zhang, J. Fluoresc. 24, 189 (2014)CrossRefGoogle Scholar
  39. 39.
    Y. Li, Y. Jiang, X.-P. Yan, Anal. Chem. 78, 6115 (2006)CrossRefGoogle Scholar
  40. 40.
    L.A. Lipscomb, F.X. Zhou, S.R. Presnell, R.J. Woo, M.E. Peek, R.R. Plaskon, L.D. Williams, Biochemistry 35, 2818 (1996)CrossRefGoogle Scholar
  41. 41.
    N. Shahabadi, S. Kashanian, Z. Ahmadipour, DNA Cell Biol. 30, 187 (2011)CrossRefGoogle Scholar
  42. 42.
    Y. Ni, M. Wei, S. Kokot, Int. J. Biol. Macromol. 49, 622 (2011)CrossRefGoogle Scholar
  43. 43.
    W.H. Lawton, E.A. Sylvestre, Technometrics 13, 617 (1971)CrossRefGoogle Scholar
  44. 44.
    M. Reichmann, S. Rice, C. Thomas, P. Doty, J. Am. Chem. Soc. 76, 3047 (1954)CrossRefGoogle Scholar
  45. 45.
    J. Marmur, J. Mol. Biol. 3, 208IN1 (1961)Google Scholar
  46. 46.
    R. Tauler, Chemom. Intell. Lab. Syst. 30, 133 (1995)CrossRefGoogle Scholar
  47. 47.
    G.H. Golub, C.F. Van Loan, Matrix Computations (JHU Press, Baltimore, 2012)Google Scholar
  48. 48.
    M. Maeder, Anal. Chem. 59, 527 (1987)CrossRefGoogle Scholar
  49. 49.
    J. Jaumot, R. Gargallo, A. de Juan, R. Tauler, Chemom. Intell. Lab. Syst. 76, 101 (2005)CrossRefGoogle Scholar
  50. 50.
    R. Tauler, A. Smilde, B. Kowalski, J. Chemom. 9, 31 (1995)CrossRefGoogle Scholar
  51. 51.
    R. Tauler, B. Kowalski, S. Fleming, Anal. Chem. 65, 2040 (1993)CrossRefGoogle Scholar
  52. 52.
    A. de Juan, R. Tauler, Anal. Chim. Acta 500, 195 (2003)CrossRefGoogle Scholar
  53. 53.
    A. de Juan, R. Tauler, Crit. Rev. Anal. Chem. 36, 163 (2006)CrossRefGoogle Scholar
  54. 54.
    K.B. Wiberg, J. Comput. Chem. 7, 379 (1986)CrossRefGoogle Scholar
  55. 55.
    C.G. Ricci, P.A. Netz, J. Chem. Inf. Model. 49, 1925 (2009)CrossRefGoogle Scholar
  56. 56.
    G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson, J. Comput. Chem. 19, 1639 (1998)CrossRefGoogle Scholar
  57. 57.
    A. Stallivieri, F. Le Guern, R. Vanderesse, E. Meledje, G. Jori, C. Frochot, S. Acherar, Photochem. Photobiol. Sci. 14, 1290 (2015)CrossRefGoogle Scholar
  58. 58.
    E.D. Becker, R.B. Bradley, C. Watson, J. Am. Chem. Soc. 83, 3743 (1961)CrossRefGoogle Scholar
  59. 59.
    M. Gouterman, J. Mol. Spectrosc. 6, 138 (1961)CrossRefGoogle Scholar
  60. 60.
    M. Sirajuddin, S. Ali, A. Badshah, J. Photochem. Photobiol, B 124, 1 (2013)CrossRefGoogle Scholar
  61. 61.
    G. Pratviel, Coord. Chem. Rev. 308, 460 (2016)CrossRefGoogle Scholar
  62. 62.
    E.C. Long, J.K. Barton, Acc. Chem. Res. 23, 271 (1990)CrossRefGoogle Scholar
  63. 63.
    J.D. McGhee, P.H. von Hippel, J. Mol. Biol. 86, 469 (1974)CrossRefGoogle Scholar
  64. 64.
    R. Fiel, B. Munson, Nucleic Acids Res. 8, 2835 (1980)CrossRefGoogle Scholar
  65. 65.
    P. Lugo-Ponce, D.R. McMillin, Coord. Chem. Rev. 208, 169 (2000)CrossRefGoogle Scholar
  66. 66.
    R. Fiel, J. Howard, E. Mark, N.D. Gupta, Nucleic Acids Res. 6, 3093 (1979)CrossRefGoogle Scholar
  67. 67.
    J. Li, Y. Wei, L. Guo, C. Zhang, Y. Jiao, S. Shuang, C. Dong, Talanta 76, 34 (2008)CrossRefGoogle Scholar
  68. 68.
    J. Kang, H. Wu, X. Lu, Y. Wang, L. Zhou, Spectrochim. Acta Part A 61, 2041 (2005)CrossRefGoogle Scholar
  69. 69.
    T. Jia, Z.-X. Jiang, K. Wang, Z.-Y. Li, Biophys. Chem. 119, 295 (2006)CrossRefGoogle Scholar
  70. 70.
    J.B. Chaires, Biopolymers 44, 201 (1997)CrossRefGoogle Scholar
  71. 71.
    D.C. Harris, M.D. Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy (Oxford University Press, New York, 1978)Google Scholar
  72. 72.
    A.P. Demchenko, Advanced Fluorescence Reporters in Chemistry and Biology I: Fundamentals and Molecular Design (Springer Science & Business Media, New York, 2010)Google Scholar
  73. 73.
    J.R. Lakowicz, G. Weber, Biochemistry 12, 4161 (1973)CrossRefGoogle Scholar
  74. 74.
    R.F. Pasternack, P.J. Collings, Science 269, 935 (1995)CrossRefGoogle Scholar
  75. 75.
    R.F. Pasternack, S. Gurrieri, R. Lauceri, R. Purrello, Inorg. Chim. Acta 246, 7 (1996)CrossRefGoogle Scholar
  76. 76.
    Z. Chen, Z. Wang, J. Chen, X. Chen, J. Wu, Y. Wu, J. Liang, Eur. J. Med. Chem. 66, 380 (2013)CrossRefGoogle Scholar
  77. 77.
    A. Laesecke, J.L. Burger, Biorheology 51, 15 (2014)Google Scholar
  78. 78.
    V.G. Barkhudaryan, G.V. Ananyan, Y.B. Dalyan, S.G. Haroutiunian, J. Porphyr. Phthalocyanines 18, 594 (2014)CrossRefGoogle Scholar
  79. 79.
    M.J. Carvlin, N. Datta-Gupta, R.J. Fiel, Biochem. Biophys. Res. Commun. 108, 66 (1982)CrossRefGoogle Scholar
  80. 80.
    R.F. Pasternack, Chirality 15, 329 (2003)CrossRefGoogle Scholar
  81. 81.
    G. Pescitelli, L. Di Bari, N. Berova, Chem. Soc. Rev. 43, 5211 (2014)CrossRefGoogle Scholar
  82. 82.
    J. Maruyama, C. Baier, H. Wolfschmidt, P. Bele, U. Stimming, Electrochim. Acta 63, 16 (2012)CrossRefGoogle Scholar
  83. 83.
    P. Ling, J. Lei, L. Zhang, H. Ju, Anal. Chem. 87, 3957 (2015)CrossRefGoogle Scholar
  84. 84.
    M.H. Fatemi, A. Heidari, S. Gharaghani, J. Theor. Biol. 369, 13 (2015)CrossRefGoogle Scholar
  85. 85.
    N. Shahabadi, S. Bagheri, Spectrochim. Acta Part A 136, 1454 (2015)CrossRefGoogle Scholar
  86. 86.
    S. Gharaghani, T. Khayamian, F. Keshavarz, Struct. Chem. 23, 341 (2012)CrossRefGoogle Scholar
  87. 87.
    C.A. Hunter, J. Singh, J.M. Thornton, J. Mol. Biol. 218, 837 (1991)CrossRefGoogle Scholar
  88. 88.
    S. Lee, Y.-A. Lee, H.M. Lee, J.Y. Lee, D.H. Kim, S.K. Kim, Biophys. J. 83, 371 (2002)CrossRefGoogle Scholar
  89. 89.
    T. Ohyama, H. Mita, Y. Yamamoto, Biophys. Chem. 113, 53 (2005)CrossRefGoogle Scholar
  90. 90.
    R.F. Pasternack, S. Ewen, A. Rao, A.S. Meyer, M.A. Freedman, P.J. Collings, S.L. Frey, M.C. Ranen, J.C. de Paula, Inorg. Chim. Acta 317, 59 (2001)CrossRefGoogle Scholar
  91. 91.
    S. Wu, Z. Li, L. Ren, B. Chen, F. Liang, X. Zhou, T. Jia, X. Cao, Bioorg. Med. Chem. 14, 2956 (2006)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  • Roghayeh Aleeshah
    • 1
  • Somayeh Zabihollahzadeh Samakoosh
    • 1
  • Abbas Eslami
    • 1
    Email author
  1. 1.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of MazandaranBabolsarIran

Personalised recommendations