Micellization of binary mixture of amino sulfonate amphoteric surfactant with octylphenol polyoxyethylene ether (10) in water/NaCl solution: effect of isopropanol

  • Jing Huang
  • Zhao Hua RenEmail author
Original Paper


The micellization behavior of amphoteric sodium 3-(N-dodecyl ethylenediamino)-2-hydroxypropyl sulfonate (C12AS) and nonionic octylphenol polyoxyethylene ether having ten oxyethylene glycol ether (OP-10) was investigated in water–isopropanol (IPA)–sodium chloride (NaCl) solution. The critical micelle concentration (cmc) including the single cmc for the single surfactant and the mixed cmc for the binary mixture of C12AS/OP-10 was determined by both tensiometry and the UV–Vis spectrometry. The mole fraction of component (X1 and \(X_{1}^{{{\text{ideal}}}}\)) and activity coefficients (f1 and f2) in mixed micelle, the interaction parameter (β12) between two surfactants, and thermodynamic parameters (ΔGM and (∆Gmic) were estimated according to the pseudophase separation model, the Clint’s model, the Rubingh’s treatment, the Maeda’s treatment, etc. Based on the regular solution theory, cosolvent effects on the interaction between two surfactants were analyzed. It shows that the mole fraction of C12AS in mixed micelle decreases with the concentration of IPA. The addition of IPA in the water/NaCl solution induces a non-monotonous change in the synergistic effect between the two surfactants. Thermodynamic data show that the increase in the concentration of IPA disfavors the spontaneous process of micellization. These phenomena are attributed to the changes in the hydrophobic effect of the hydrophobic group of the surfactant, the electrostatic repulsion between the ionic head groups of C12AS, and the steric effect of the head groups of two surfactants on adding IPA.


Amino sulfonate Nonionic surfactant Isopropanol Micellization Salt Synergism 



Funding for this work was provided by the National Natural Science Foundation of China (51304029), the Natural Science Foundation of Hubei Province (2016CFB477) and the Hubei Chenguang Talented Youth Development Foundation, China.


  1. 1.
    M.J. Rosen, J.T. Junkappu, Surfactants and interfacial phenomena, 4th edn. (Wiley, Hoboken, 2012)CrossRefGoogle Scholar
  2. 2.
    Z.H. Ren, Y. Luo, Tenside Surfact Det. 50, 369–375 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Yousefi, S. Javadian, H. Gharibi, J. Kakemam, M. Rashidi-Alavijeh, J. Phys. Chem. B 115, 8112–8121 (2011)CrossRefGoogle Scholar
  4. 4.
    P.D. Berger, C.H. Berger, Oil recovery method employing amphoteric surfactants, US 7556098, 2009Google Scholar
  5. 5.
    Z.H. Ren, D.J. Chen, Y. Luo, J. Huang, Acta Chim. Sin. 68, 1771–1775 (2010)Google Scholar
  6. 6.
    A. Rodriguez, M.M. Graciani, M.L. Moya, Langmuir, 24 (2008) 12785–12792CrossRefGoogle Scholar
  7. 7.
    S. Aslanzadeh, A. Yousefi, J. Surfact Deterg. 17, 709–716 (2014)CrossRefGoogle Scholar
  8. 8.
    M.S. Bakshi, G. Kaur, J. Mol. Liq. 88, 15–32 (2000)CrossRefGoogle Scholar
  9. 9.
    A. Makayssi, R. Bury, C. Treiner, Langmuir, 10 (1994) 1359–1365CrossRefGoogle Scholar
  10. 10.
    Z.H. Ren, J. Ind. Eng. Chem. 20, 3649–3657 (2014)CrossRefGoogle Scholar
  11. 11.
    Z.H. Ren, Ind. Eng. Chem. Res. 53, 10035–10040 (2014)CrossRefGoogle Scholar
  12. 12.
    Z.H. Ren, J. Huang, Y. Lue, Y.C. Zheng, P. Mei, W.C. Yu, L. Lai, Y.L. Chang, F.X. Li, J. Taiwan Inst. Chem. E. 65, 482–487 (2016)CrossRefGoogle Scholar
  13. 13.
    Z.H. Ren, J. Huang, Y. Lue, Y.C. Zheng, P. Mei, W.C. Yu, L. Lai, Y.L. Chang, F.X. Li, Colloids Surf. A Physicochem. Eng. Asp. 504, 131–138 (2016)CrossRefGoogle Scholar
  14. 14.
    Z.H. Ren, J. Huang, Y.C. Zheng, L. Lai, L.L. Hu, J. Mol. Liq. 236, 101–106 (2017)CrossRefGoogle Scholar
  15. 15.
    Z.H. Ren, J. Huang, Y. Lue, Y.C. Zheng, P. Mei, L. Lai, Y.L. Chang, J. Ind. Eng. Chem. 36, 263–270 (2016)CrossRefGoogle Scholar
  16. 16.
    Z.H. Ren, J. Huang, Y.C. Zheng, L. Lai, L.L. Hu, Y.L. Chang, J. Chem. Eng. Data 62, 938–946 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Rodriguez, M.D.M. Graciani, M. Munoz, M.L. Moya, Langmuir, 19 (2003) 7206–7213CrossRefGoogle Scholar
  18. 18.
    P.M. Holland, D.N. Rubingh, J. Phys. Chem. 87, 1984–1990 (1983)CrossRefGoogle Scholar
  19. 19.
    J.H. Clint, J. Chem. Soc. Faraday Trans. 1, 71 (1975) 1327–1334.Google Scholar
  20. 20.
    P. Molyneux, C.T. Thodes, J. Swarbrich, Trans. Faraday Soc. 61, 1043–1052 (1965)CrossRefGoogle Scholar
  21. 21.
    H. Maeda, J. Colloid Interface Sci. 172, 98–105 (1995)CrossRefGoogle Scholar
  22. 22.
    A.A. Dar, G.M. Rather, S. Ghosh, A.R. Das, J. Colloid Interface Sci. 322, 572–581 (2008)CrossRefGoogle Scholar
  23. 23.
    D. Chandler, Nature 437, 640–647 (2005)CrossRefGoogle Scholar
  24. 24.
    J.A. Long, B.M. Rankin, D. Ben-Amotz, J. Am. Chem. Soc. 137, 10809–10815 (2015)CrossRefGoogle Scholar
  25. 25.
    Z.H. Ren, J. Huang, Y.C. Zheng, L. Lai, P. Mei, X.R. Yu, Y.L. Chang, J. Mol. Liq. 272, 380–386 (2018)CrossRefGoogle Scholar
  26. 26.
    J.E. Gordon, The Organic Chemistry of Electrolyte Solutions (Wiley, New York, 1975)Google Scholar
  27. 27.
    C.C. Ruiz, J.A. Molina-Bolivar, J. Aguiar, Langmuir 17, 6831–6840 (2001)CrossRefGoogle Scholar
  28. 28.
    D. Maria, R. Amalia, M. Maria, M.M. Luisa, Langmuir 21, 7161–7169 (2005)CrossRefGoogle Scholar
  29. 29.
    S. Puvvada, D. Blankschtein, J. Chem. Phys. 92, 3710–3724 (1990)CrossRefGoogle Scholar
  30. 30.
    Z.H. Ren, Y. Luo, D.P. Shi, Colloids Surf A Physicochem Eng Asp. 428, 18–24 (2013)CrossRefGoogle Scholar
  31. 31.
    S. Javadian, H. Gharibi, Z. Bromand, B. Sohrabi, J. Colloid Interface Sci. 318, 449–456 (2008)CrossRefGoogle Scholar
  32. 32.
    H. Gharibi, S. Javadian, B. Sohrabi, R. Behjatmanesh, J. Colloid Interface Sci. 285, 351–359 (2005)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.College of Chemistry and Environmental EngineeringYangtze UniversityJingzhouChina

Personalised recommendations