Design of CuO/SnO2 heterojunction photocatalyst with enhanced UV light-driven photocatalytic activity on congo-red and malachite green dyes

  • D. Selleswari
  • P. MeenaEmail author
  • D. Mangalaraj
Original Paper


In this work, CuO–SnO2 composite thin films were prepared by spray pyrolysis method using copper acetate and tin chloride dihydrate as raw materials. The structural, morphological and optical properties of the prepared nanocomposite were systematically investigated by X-ray diffraction (XRD), Scanning electron microscope (SEM) and UV–Vis absorption spectra analysis. The calculated grain size was in the range from 27 to 54 nm. SEM images reveal a spherical shaped morphology with an average diameter of around 10–15 nm. EDX analysis confirms the composition of the deposited thin films. The band gap of the composite thin films obtained from the optical absorption spectra is observed to be in the range from 2.98 to 3.67 eV. The photocatalytic activity of the nanocomposite was investigated using congo-red (CR) and malachite green (MG) under UV light irradiation. The results showed that the CuO–SnO2 composite exhibits superior photocatalytic performance towards CR such as high degradation efficiency (97%) and long term stability (only 3% loss) after a seven cycles test. This enhanced photocatalytic activity can be attributed to the low recombination probability of photo-induced carriers due to the efficient charge transfer in the nanocomposites. The improved photocatalytic mechanism of CuO–SnO2 composite is also discussed in brief.


CuO–SnO2 composite Spray pyrolysis UV light Photocatalyst Congo-red 


  1. 1.
    U.I. Gaya, A.H. Abdullah, Z. Zainal, M.Z. Hussein, J. Hazard. Mater. 168, 57 (2009)CrossRefGoogle Scholar
  2. 2.
    S. Mukhopadhyay, P.P. Das, S. Maity, P. Ghosh, P.S. Devi, Appl. Catal. B Environ. 165, 128 (2015)CrossRefGoogle Scholar
  3. 3.
    M.L. Huang, S.X. Weng, B. Wang, J. Hu, X.Z. Fu, P. Liu, J. Phys. Chem. C 118, 25434 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Girish Kumar, K.S.R. Koteswara Rao, RSC Adv. 5, 3306 (2015)CrossRefGoogle Scholar
  5. 5.
    M.R. Kumar, G. Murugadoss, A.N. Pirogov, R. Thangamuthu, J. Mater. Sci. Mater. Electron. 29, 13508 (2018)CrossRefGoogle Scholar
  6. 6.
    W. Zhao, W.H. Ma, C.C. Chen, J.C. Zhao, Z.G. Shuai, J. Am. Chem. Soc. 126, 4782 (2004)CrossRefGoogle Scholar
  7. 7.
    M. Ghanbari, F. Ansari, M. Salavati-Niasari, Inorg. Chim. Acta. 455, 88 (2017)CrossRefGoogle Scholar
  8. 8.
    G. Murugadoss, R. Thangamuthu, R. Jayavel, M. Rajesh Kumar, J. Lumin. 165, 30 (2015)CrossRefGoogle Scholar
  9. 9.
    O. Amiria, N. Mir, F. Ansarid, M. Salavati-Niasari, Electrochim. Acta 252, 315 (2017)CrossRefGoogle Scholar
  10. 10.
    F. Ansari, P. Nazari, M. Payandeh, F.M. Asl, B. Abdollahi-Nejand, V. Ahmadi, J. Taghiloo, M. Salavati-Niasari, Nanotechnology 29, 075404 (2018)CrossRefGoogle Scholar
  11. 11.
    P. Nazari, F. Ansari, B.A. Nejand, V. Ahmadi, M. Payandeh, M. Salavati-Niasari, J. Phys. Chem. C 121, 21935 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Parthibavarmana, V. Hariharan, C. Sekar, Mater. Sci. Eng. C. 31, 840 (2011)CrossRefGoogle Scholar
  13. 13.
    H.-L. Xia, H.-S. Zhuang, T. Zhang, D.-C. Xiao, J. Environ. Sci. 19, 1141 (2007)CrossRefGoogle Scholar
  14. 14.
    A. Kumar, L. Rout, L. Satish Kumar Achary, A. Mohanty, J.M.P.K. Chand, P. Dash, AIP Conf. Proc. 1724, 020027 (2016)Google Scholar
  15. 15.
    A.T. Rajamanickam, P. Thirunavukkarasu, K. Dhanakodi, J. Mater. Sci. Mater. Elec. 26, 8933 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, J. Mater. Sci. Mater. Electron. 25, 730 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Ahmad, E. Ahmed, Y. Zhang, N.R. Khalid, J. Xu, M. Ullah, Z. Hong, Curr. Appl. Phys. 13, 697 (2013)CrossRefGoogle Scholar
  18. 18.
    L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, L.M. Wang, F. Gao, J. Mater. Sci. Mater. Electron. 19, 868 (2008)CrossRefGoogle Scholar
  19. 19.
    V. Kumar, V. Kumar, S. Som, J.H. Neethling, M. Lee, O.M. Ntwaeaborwa, H.C. Swart. Nanotechnology 25, 135701 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Koshy, M. Soosen Samuel, A. Chandran, K.C. George, AIP Conf. Proc. 1391, 576 (2011)CrossRefGoogle Scholar
  21. 21.
    J.H. He, T.H. Wu, C.L. Hsin, K.M. Li, L.J. Chen, Y.L. Chueh, L.J. Chou, Z.L. Wang, Small 2, 116 (2006)CrossRefGoogle Scholar
  22. 22.
    M. Sabarilakshmi, K. Janaki, J. Mater. Sci. Mater. Electron. 28, 5329 (2017)CrossRefGoogle Scholar
  23. 23.
    L. Chen, L. Li, G. Li, J. Alloy. Compd. 464, 532 (2008)CrossRefGoogle Scholar
  24. 24.
    M. Parthibavarman, V. Sharmila, P. Sathishkumar, S.A. Gaikwad, J. Electron. Mater. 47, 5443 (2018)CrossRefGoogle Scholar
  25. 25.
    D. Shaposhnik, R. Pavelko, E. Llobet, F. Gispert-Guirado, X. Vilanova, Int. J. Hydrog. Energy. 34, 3621 (2009)CrossRefGoogle Scholar
  26. 26.
    A. Bokare, A. Sanap, M. Pai, S. Sabharwal, A.A. Athawale, Colloids Surf. B Biointerface 102, 273 (2013)CrossRefGoogle Scholar
  27. 27.
    D. Li, J. Hu, R. Wu, J.G. Lu, Nanotechnology 21, 485502 (2010)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.PG and Research Department of PhysicsChikkaiah Naicker CollegeErodeIndia
  2. 2.Department of PhysicsP.S.G.R. Krishnammal College for WomenCoimbatoreIndia
  3. 3.Department of Nanoscience and NanotechnologyBharathiar UniversityCoimbatoreIndia

Personalised recommendations