Journal of the Iranian Chemical Society

, Volume 16, Issue 3, pp 437–447 | Cite as

Recent advances in fluorescent probes for peroxynitrite detection

  • Linlin Wang
  • Juanjuan Shao
  • Bingxiao Cheng
  • Xiao Li
  • Jingjun MaEmail author
Original Paper


Peroxynitrite (ONOO), known as a kind of reactive nitrogen species, is a significant factor involved in a broad spectrum of physiological and pathological processes. However, their biological functions remain to be controversial or poorly characterized yet, mainly because of the lack of reliable methods for sensitive and specific detection of ONOO in vitro and in vivo. Thus, approaches that enable noninvasive visualized imaging of ONOO will be of enormous benefit in understanding the processes of related diseases and developing novel drugs. During the last decades, fluorescent probes, with high sensitivity and real-time spatial imaging capacity, receive more and more attention. Herein, we strive to summarize the current fluorescent probes for ONOO, including small-molecular fluorescent probes, nanoparticles-based fluorescent probes, and genetically encoded fluorescent probes. Furthermore, the challenges and attempt to give an outlook on the possible further developments are discussed.


Peroxynitrite Imaging Fluorescent probes Nanoparticles 



The authors gratefully appreciate the support from the “Double First-rate subject-Food Science and Engineering” Program of Heibei Province (2018SPGCA18), Young Tip-top Talents Plan of Universities and Colleges in Hebei Province of China (BJ2017026), and the Specific Foundation for Doctor in Hebei Agriculture University of China (ZD201709).

Compliance with ethical standards

Conflict of interest

The author(s) confirm that this article content has no conflict of interest.


  1. 1.
    R.P. Patel, J. McAndrew, H. Sellak, C.R. White, H. Jo, B.A. Freeman, V.M. Darley-Usmar, Biochim. Biophys. Acta 1411, 385 (1999)Google Scholar
  2. 2.
    R. Radi, Proc. Natl. Acad. Sci. USA 101, 4003 (2004)Google Scholar
  3. 3.
    M. Valko, D. Leibfritz, J. Moncol, M.T. Cronin, M. Mazur, J. Telser, Int. J. Biochem. Cell Biol. 39, 44 (2007)Google Scholar
  4. 4.
    J.S. Beckman, T.W. Beckman, J. Chen, P.A. Marshall, B.A. Freeman, Proc. Natl. Acad. Sci. USA 87, 1620 (1990)Google Scholar
  5. 5.
    R. Radi, J.S. Beckman, K.M. Bush, B.A. Freeman, J. Biol. Chem. 266, 4244 (1991)Google Scholar
  6. 6.
    M.G. Salgo, G.L. Squadrito, W.A. Pryor, Biochem. Biophys. Res. Commun. 215, 1111 (1995)Google Scholar
  7. 7.
    M.G. Salgo, E. Bermudez, G.L. Squadrito, W.A. Pryor, Arch. Biochem. Biophys. 322, 500 (1995)Google Scholar
  8. 8.
    E. Bonfoco, D. Krainc, M. Ankarcrona, P. Nicotera, S.A. Lipton, Proc. Natl. Acad. Sci. USA 92, 7162 (1995)Google Scholar
  9. 9.
    J. Zielonka, A. Sikora, M. Hardy, J. Joseph, B.P. Dranka, B. Kalyanaraman, Chem. Res. Toxicol. 25, 1793 (2012)Google Scholar
  10. 10.
    Y. Takaoka, T. Sakamoto, S. Tsukiji, M. Narazaki, T. Matsuda, H. Tochio, M. Shirakawa, I. Hamachi, Nat. Chem. 1, 557 (2009)Google Scholar
  11. 11.
    A.R. Lippert, G.C. Van de Bittner, C.J. Chang, Acc. Chem. Res. 44, 793 (2011)Google Scholar
  12. 12.
    A. Sikora, J. Zielonka, M. Lopez, J. Joseph, B. Kalyanaraman, Free Radic. Biol. Med. 47, 1401 (2009)Google Scholar
  13. 13.
    P. Pacher, J.S. Beckman, L. Liaudet, Physiol. Rev. 87, 315 (2007)Google Scholar
  14. 14.
    C. Szabó, H. Ischiropoulos, R. Radi, Nat. Rev. Drug Discov. 6, 662 (2007)Google Scholar
  15. 15.
    L. Liaudet, G. Vassalli, P. Pacher, Front. Biosci. 14, 4809 (2009)Google Scholar
  16. 16.
    R.G. Allen, W.P. Lafuse, N.D. Powell, J.I. Webster-Marketon, L.M. Stiner-Jones, J.F. Sheridan, M.T. Bailey, Infect Immun. 80, 3429 (2012)Google Scholar
  17. 17.
    M.N. Alvarez, G. Peluffo, L. Piacenza, R. Radi, J. Biol. Chem. 286, 6627 (2011)Google Scholar
  18. 18.
    P.A. Darrah, M.K. Hondalus, Q. Chen, Infect Immun. 68, 3587 (2000)Google Scholar
  19. 19.
    J. Kim, J. Park, H. Lee, Y. Choi, Y. Kim, Chem. Commun. 50, 9353 (2014)Google Scholar
  20. 20.
    J. Chan, S.C. Dodani, C.J. Chang, Nat. Chem. 4, 973 (2012)Google Scholar
  21. 21.
    Y. Yang, Q. Zhao, W. Feng, F. Li, Chem. Rev. 113, 192 (2012)Google Scholar
  22. 22.
    B.S. Zhao, Y. Liang, Y. Song, C. Zheng, Z. Hao, P.R. Chen, J. Am. Chem. Soc. 132, 17065 (2010)Google Scholar
  23. 23.
    Q. Zhang, Z. Zhu, Y. Zheng, J. Cheng, N. Zhang, Y.T. Long, J. Zheng, X. Qian, Y. Yang, J. Am. Chem. Soc. 134, 18479 (2012)Google Scholar
  24. 24.
    Z.H. Li, R. Liu, Z.L. Tan, L. He, Z.L. Lu, B. Gong, ACS Sens. 2, 501 (2017)Google Scholar
  25. 25.
    Z.J. Chen, W. Ren, Q.E. Wright, H.W. Ai, J. Am. Chem. Soc. 135, 14940 (2013)Google Scholar
  26. 26.
    J. Miao, Y. Huo, Q. Liu, Z. Li, H. Shi, Y. Shi, W. Guo, Biomaterials. 107, 33 (2016)Google Scholar
  27. 27.
    X. Chen, H. Chen, R. Deng, J. Shen, Biomed. J. 37, 120 (2014)Google Scholar
  28. 28.
    E.V. Lampard, A.C. Sedgwick, X. Sun, K.L. Filer, S.C. Hewins, G. Kim, J. Yoon, S.D. Bull, T.D. James, Chemistry Open. 7, 262 (2018)Google Scholar
  29. 29.
    M.S. Purdey, H.S. Connaughton, S. Whiting, E.P. Schartner, T.M. Monro, J.G. Thompson, R.J. Aitken, A.D. Abell, Free Radic. Biol. Med. 81, 69 (2015)Google Scholar
  30. 30.
    J. Zhou, Y. Li, J. Shen, Q. Li, R. Wang, Y. Xu, X. Qian, RSC Adv. 4, 51589 (2014)Google Scholar
  31. 31.
    D. Yang, H.L. Wang, Z.N. Sun, N.W. Chung, J.G. Shen, J. Am. Chem. Soc. 128, 6004 (2006)Google Scholar
  32. 32.
    Z.N. Sun, H.L. Wang, F.Q. Liu, Y. Chen, P.K. Tam, D. Yang, Org. Lett. 11, 1887 (2009)Google Scholar
  33. 33.
    T. Peng, D. Yang, Org. Lett. 12, 1887 (2010)Google Scholar
  34. 34.
    T. Peng, N.K. Wong, X. Chen, Y.K. Chan, Z. Sun, J.J. Hu, J. Shen, H. EI-Nezami, D. Yang, J. Am. Chem. Soc. 136, 11728 (2014)Google Scholar
  35. 35.
    H. Zhang, J. Liu, Y.Q. Sun, Y. Huo, Y. Li, W. Liu, X. Wu, N. Zhu, Y. Shi, W. Guo, Chem. Commun. 51, 2721 (2015)Google Scholar
  36. 36.
    X. Li, R.R. Tao, L.J. Hong, J. Cheng, Q. Jiang, Y.M. Lu, M.H. Liao, W.F. Ye, N.N. Lu, F. Han, Y.Z. Hu, Y.H. Hu, J. Am. Chem. Soc. 137, 12296 (2015)Google Scholar
  37. 37.
    E. Hill, M.K. Linder, K.S. Davies, G.A. Sawada, J. Morgan, T.Y. Ohulchanskyy, M.R. Detty, J. Med. Chem. 57, 8622 (2014)Google Scholar
  38. 38.
    H. Wang, M. Xu, M. Xiong, J. Cheng, Chem. Commun. 51, 4807 (2015)Google Scholar
  39. 39.
    M.P. Robin, P. Wilson, A.B. Mabire, J.K. Kiviaho, J.K. Raymond, D.M. Haddleton, R.K. O’Reilly, J. Am. Chem. Soc. 135, 2875 (2013)Google Scholar
  40. 40.
    L. Lazar, M. Nagy, A. Borbas, P. Herczegh, M. Zsuga, S. Keki, Eur. J. Org. Chem. 80, 7675 (2015)Google Scholar
  41. 41.
    M.P. Robin, R.K. O’Reilly, Chem. Sci. 5, 2717 (2014)Google Scholar
  42. 42.
    T. Yudhistira, S.V. Mulay, K.J. Lee, Y. Kim, H.S. Park, D.G. Churchill, Chem. Asian. J. 12, 1927 (2017)Google Scholar
  43. 43.
    D. Yu, F. Huang, S. Ding, G. Feng, Anal. Chem. 86, 8835 (2014)Google Scholar
  44. 44.
    P. Li, H. Xiao, Y. Cheng, W. Zhang, F. Huang, W. Zhang, H. Wang, B. Tang, Chem. Commun. 50, 7184 (2014)Google Scholar
  45. 45.
    Z. Guo, S. Park, J. Yoon, I. Shin, Chem. Soc. Rev. 43, 16 (2014)Google Scholar
  46. 46.
    F. Yu, P. Li, G. Li, G. Zhao, T. Chu, K. Han, J. Am. Chem. Soc. 133, 11030 (2011)Google Scholar
  47. 47.
    F. Yu, P. Li, B. Wang, K. Han, J. Am. Chem. Soc. 135, 7674 (2013)Google Scholar
  48. 48.
    H. Ali, S.K. Bhunia, C. Dalal, N.R. Jana, ACS Appl. Mater. Interfaces. 8, 9305 (2016)Google Scholar
  49. 49.
    N. Lin, J. Li, Z. Lu, L. Bian, L. Zheng, Q. Cao, Z. Ding, Nanoscale 7, 4971 (2015)Google Scholar
  50. 50.
    T.H. Shin, Y. Choi, S. Kim, J. Cheon, Chem. Soc. Rev. 44, 4501 (2015)Google Scholar
  51. 51.
    A.M. Dennis, W.J. Rhee, D. Sotto, S.N. Dublin, G. Bao, ACS Nano. 6, 2917 (2012)Google Scholar
  52. 52.
    S.K. Bhunia, A. Saha, A.R. Maity, S.C. Ray, N.R. Jana, Sci. Rep. 3, 1473 (2013)Google Scholar
  53. 53.
    E.F. Simões, J.C. da Silva, J.M. Leitão, Anal. Chim. Acta 852, 174 (2014)Google Scholar
  54. 54.
    X. Wu, S. Sun, Y. Wang, J. Zhu, K. Jiang, Y. Leng, Q. Shu, H. Lin, Biosens. Bioelectron. 90, 501 (2017)Google Scholar
  55. 55.
    M.C. Mancini, B.A. Kairdolf, A.M. Smith, S. Nie, J. Am. Chem. Soc. 130, 10836 (2008)Google Scholar
  56. 56.
    W.C. Wu, C.Y. Chen, Y. Tian, S.H. Jang, Y. Hong, Y. Liu, R. Hu, B.Z. Tang, Y.T. Lee, C.T. Chen, W.C. Chen, Adv. Funct. Mater 20, 1413 (2010)Google Scholar
  57. 57.
    J. Tian, H. Chen, L. Zhuo, Y. Xie, N. Li, B. Tang, Chemistry 17, 6626 (2011)Google Scholar
  58. 58.
    C. Zhu, L. Liu, Q. Yang, F. Lv, Chem. Rev. 112, 4687 (2012)Google Scholar
  59. 59.
    L.P. Fernando, P.K. Kandel, J.B. Yu, J. McNeill, P.C. Ackroyd, K.A. Christensen, Biomacromol 11, 2675 (2010)Google Scholar
  60. 60.
    K. Pu, A.J. Shuhendler, J. Rao, Angew. Chem. Int. Ed. Engl. 52, 10325 (2013)Google Scholar
  61. 61.
    L. Schermelleh, R. Heintzmann, H. Leonhardt, J. Cell Biol. 190, 165 (2010)Google Scholar
  62. 62.
    O. Shimomura, F.H. Johnson, Y. Saiga, J. Cell Comp. Physiol. 59, 223 (1962)Google Scholar
  63. 63.
    M. Ormo, A.B. Cubitt, K. Kallio, L.A. Gross, R.Y. Tsien, S.J. Remington, Science 273, 1392 (1996)Google Scholar
  64. 64.
    W. Ren, H.W. Ai, Sensors 13, 15422 (2013)Google Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  • Linlin Wang
    • 1
  • Juanjuan Shao
    • 1
  • Bingxiao Cheng
    • 1
  • Xiao Li
    • 1
  • Jingjun Ma
    • 1
    • 2
    Email author
  1. 1.Department of Science and TechnologyAgricultural University of HebeiHuanghuaChina
  2. 2.Hebei Agricultural Products Processing Engineering Technology ResearchBaodingChina

Personalised recommendations