Advertisement

Detection/quantification of amyloid aggregation in solution using the novel fluorescent benzofuranone-derivative compounds as amyloid fluorescent probes: synthesis and in vitro characterization

  • Sirvan Abbasbeigi
  • Hadi Adibi
  • Sajad Moradi
  • Seyyed Abolghasem GhadamiEmail author
  • Reza KhodarahmiEmail author
Original Paper
  • 9 Downloads

Abstract

Neurodegenerative diseases are characterized by the presence of amyloid deposition. Thioflavin T (ThT) has been one of the molecules of choice to attempt the detection of the amyloid deposits, but ThT is unable to cross blood–brain barrier, due to its low lipophilicity. Therefore, there is strong motivation to design and develop new compounds for in vitro fibril detection as well as for in vivo amyloid imaging. Additionally, the importance and critical role of oxidative stress in the onset/progression of some neurodegenerative disorders, and therefore, the efficacy of aurone compounds in inhibiting the resulting toxicity have been frequently reported. In this study, we report the synthesis of some benzofuranone compounds and examine their antioxidant inhibitory property. Furthermore, to establish the potential detection of synthesized compounds to amyloid aggregates, their in vitro binding to some non-disease related amyloidogenic proteins were characterized. Analyses of the in vitro binding studies showed that compounds 3 and 4 bind to the fibril structures successfully while compounds 1, 2 and 5 indicated a low affinity binding to amyloid. Additionally, compounds 3 and 4 exhibited very good antioxidant properties. Furthermore, these compounds have a great potential as fluorescent probes for detecting amyloid aggregation for further investigations.

Keywords

Amyloid determination β-Lactoglobulin BSA Antioxidant activity 

Abbreviations

AD

Alzheimer’s disease

MS

Mass spectrometry

ROS

Reactive oxygen species

ThT

Thioflavin T

TEM

Transmission electron microscopy

AFM

Atomic force microscopy

PMSF

Phenyl methyl sulphonyl fluoride

DMSO

Dimethyl sulphoxide

TFE

2,2,2-Trifluoroethanol

TMB

3,3′,5,5′-Tetramethylbenzidine

TMS

Tetramethylsilane

SDS-PAGE

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

β-Lg

β-Lactoglobulin

BSA

Bovine serum albumin

DPPH

2,2-Diphenyl-1-picrylhydrazyl radical

FRAP

Ferric reducing antioxidant power

PET

Positron emission tomography

PCs

Phenolic compounds

BBB

Blood brain barrier

CR

Congo red

References

  1. 1.
    C.S. Sipe, M.R. Thomas, B.J. Stegmann, B.J. Van Voorhis, Hum. Reprod. 25, 690–696 (2010).  https://doi.org/10.1093/humrep/dep442 CrossRefGoogle Scholar
  2. 2.
    T.P. Knowles, M. Vendruscolo, C.M. Dobson, Nat. Rev. Mol. Cell Biol. 15, 384–396 (2014).  https://doi.org/10.1038/nrm3810 CrossRefGoogle Scholar
  3. 3.
    F. Chiti, C.M. Dobson, Annu. Rev. Biochem. 75, 333–366 (2006).  https://doi.org/10.1146/annurev.biochem.75.101304.123901 CrossRefGoogle Scholar
  4. 4.
    R.B. Maccioni, J.P. Munoz, L. Barbeito, Arch. Med Res. 32, 367–381 (2001)CrossRefGoogle Scholar
  5. 5.
    J.A. Hardy, G.A. Higgins, Science 256, 184–185 (1992)CrossRefGoogle Scholar
  6. 6.
    C. Vigo-Pelfrey, D. Lee, P. Keim, I. Lieberburg, D.B. Schenk, J. Neurochem. 61, 1965–1968 (1993)CrossRefGoogle Scholar
  7. 7.
    D. Morgan, D.M. Diamond, P.E. Gottschall, K.E. Ugen, C. Dickey, J. Hardy, K. Duff, P. Jantzen, G. DiCarlo, D. Wilcock, K. Connor, J. Hatcher, C. Hope, M. Gordon, G.W. Arendash, Nature 408, 982–985 (2000).  https://doi.org/10.1038/35050116 CrossRefGoogle Scholar
  8. 8.
    C.W. Cotman, E. Head, B.A. Muggenburg, S. Zicker, N.W. Milgram, Neurobiol. Aging 23, 809–818 (2002)CrossRefGoogle Scholar
  9. 9.
    C.D. Smith, J.M. Carney, P.E. Starke-Reed, C.N. Oliver, E.R. Stadtman, R.A. Floyd, W.R. Markesbery, Proc. Natl. Acad. Sci. USA 88, 10540–10543 (1991)CrossRefGoogle Scholar
  10. 10.
    W.R. Markesbery, Arch. Neurol. 56, 1449–1452 (1999)CrossRefGoogle Scholar
  11. 11.
    D.A. Butterfield, J. Drake, C. Pocernich, A. Castegna, Trends Mol. Med. 7, 548–554 (2001)CrossRefGoogle Scholar
  12. 12.
    C.M. Lauderback, J.M. Hackett, F.F. Huang, J.N. Keller, L.I. Szweda, W.R. Markesbery, D.A. Butterfield, J. Neurochem. 78, 413–416 (2001)CrossRefGoogle Scholar
  13. 13.
    C. Behl, J.B. Davis, R. Lesley, D. Schubert, Cell 77, 817–827 (1994)CrossRefGoogle Scholar
  14. 14.
    M.P. Mattson, Y. Goodman, Brain Res. 676, 219–224 (1995)CrossRefGoogle Scholar
  15. 15.
    T. Pillot, B. Drouet, S. Queille, C. Labeur, J. Vandekerchkhove, M. Rosseneu, M. Pincon-Raymond, J. Chambaz, J. Neurochem. 73, 1626–1634 (1999)CrossRefGoogle Scholar
  16. 16.
    K. Ono, T. Hamaguchi, H. Naiki, M. Yamada, Biochim. Biophys. Acta 1762, 575–586 (2006).  https://doi.org/10.1016/j.bbadis.2006.03.002 CrossRefGoogle Scholar
  17. 17.
    O.S. Makin, L.C. Serpell, J. Mol. Biol. 335, 1279–1288 (2004)CrossRefGoogle Scholar
  18. 18.
    S. Freire, M.H. de Araujo, W. Al-Soufi, M. Novo, Dyes Pigm. 110, 97–105 (2014).  https://doi.org/10.1016/j.dyepig.2014.05.004 CrossRefGoogle Scholar
  19. 19.
    N. Darghal, A. Garnier-Suillerot, M. Salerno, Biochem. Biophys. Res. Commun. 343, 623–629 (2006)CrossRefGoogle Scholar
  20. 20.
    R. Haudecoeur, A. Ahmed-Belkacem, W. Yi, A. Fortuné, R. Brillet, C. Belle, E. Nicolle, C. Pallier, J.-M. Pawlotsky, A. Boumendjel, J. Med. Chem. 54, 5395–5402 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Siah, M.H. Farzaei, M.R. Ashrafi-Kooshk, H. Adibi, S.S. Arab, M.R. Rashidi, R. Khodarahmi, Bioorg. Chem. 64, 74–84 (2016)CrossRefGoogle Scholar
  22. 22.
    S.A. Ghadami, R. Khodarahmi, S. Ghobadi, M. Ghasemi, S. Pirmoradi, Biophys. Chem. 159, 311–320 (2011).  https://doi.org/10.1016/j.bpc.2011.08.004 CrossRefGoogle Scholar
  23. 23.
    U.K. Laemmli, Nature 227, 680–685 (1970)CrossRefGoogle Scholar
  24. 24.
    M.M. Bradford, Anal. Biochem. 72, 248–254 (1976)CrossRefGoogle Scholar
  25. 25.
    M. Calamai, F. Chiti, C.M. Dobson, Biophys. J. 89, 4201–4210 (2005)CrossRefGoogle Scholar
  26. 26.
    S.A. Ghadami, Z. Hossein-pour, R. Khodarahmi, S. Ghobadi, H. Adibi, Med. Chem. Res. 22, 115–126 (2013)CrossRefGoogle Scholar
  27. 27.
    G. Giovannoni, J. Land, G. Keir, E. Thompson, S. Heales, Ann. Clin. Biochem. Int. J. Biochem. Med. 34, 193–198 (1997)CrossRefGoogle Scholar
  28. 28.
    W. Wang, Int. J. Pharm. 289, 1–30 (2005)CrossRefGoogle Scholar
  29. 29.
    K. Volkova, V. Kovalska, A. Balanda, R. Vermeij, V. Subramaniam, Y.L. Slominskii, S. Yarmoluk, J. Biochem. Biophys. Methods 70, 727–733 (2007)CrossRefGoogle Scholar
  30. 30.
    M. Groenning, M. Norrman, J.M. Flink, M. van de Weert, J.T. Bukrinsky, G. Schluckebier, S. Frokjaer, J. Struct. Biol. 159, 483–497 (2007)CrossRefGoogle Scholar
  31. 31.
    G.M. Morris, D.S. Goodsell, R. Huey, A.J. Olson, J Comput. Aided Mol. Des. 10, 293–304 (1996)CrossRefGoogle Scholar
  32. 32.
    J.J. Esteb, L.M. McNulty, J. Magers, P. Morgan, A.M. Wilson, J. Chem. Educ. 87, 1074–1077 (2010)CrossRefGoogle Scholar
  33. 33.
    M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, J. Cheminform. 4, 17 (2012).  https://doi.org/10.1186/1758-2946-4-17 CrossRefGoogle Scholar
  34. 34.
    G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson, J. Comput. Chem. 19, 1639–1662 (1998)CrossRefGoogle Scholar
  35. 35.
    V. Bondet, W. Brand-Williams, C. Berset, LWT Food Sci. Technol. 30, 609–615 (1997).  https://doi.org/10.1006/fstl.1997.0240 CrossRefGoogle Scholar
  36. 36.
    M.S. Blois, Nature 181, 1199–1200 (1958)CrossRefGoogle Scholar
  37. 37.
    I.F. Benzie, J.J. Strain, Methods Enzymol. 299, 15–27 (1999)CrossRefGoogle Scholar
  38. 38.
    M.G. Savelieff, A.S. DeToma, J.S. Derrick, M.H. Lim, Acc. Chem. Res. 47, 2475–2482 (2014).  https://doi.org/10.1021/ar500152x CrossRefGoogle Scholar
  39. 39.
    M. Ono, R. Watanabe, H. Kawashima, T. Kawai, H. Watanabe, M. Haratake, H. Saji, M. Nakayama, Bioorg. Med. Chem. 17, 2069–2076 (2009).  https://doi.org/10.1016/j.bmc.2009.01.025 CrossRefGoogle Scholar
  40. 40.
    M. Ono, N. Yoshida, K. Ishibashi, M. Haratake, Y. Arano, H. Mori, M. Nakayama, J. Med. Chem. 48, 7253–7260 (2005).  https://doi.org/10.1021/jm050635e CrossRefGoogle Scholar
  41. 41.
    M. Hadjeri, C. Beney, A. Boumendjel, Curr. Org. Chem. 7, 679–689 (2003)CrossRefGoogle Scholar
  42. 42.
    R. Khodarahmi, S.A. Karimi, M.R. Ashrafi Kooshk, S.A. Ghadami, S. Ghobadi, M. Amani, Spectrochim. Acta A Mol. Biomol. Spectrosc. 89, 177–186 (2012).  https://doi.org/10.1016/j.saa.2011.12.058 CrossRefGoogle Scholar
  43. 43.
    P. Aymard, D. Durand, T. Nicolai, Int. J. Biol. Macromol. 19, 213–221 (1996)CrossRefGoogle Scholar
  44. 44.
    J.M. Jung, G. Savin, M. Pouzot, C. Schmitt, R. Mezzenga, Biomacromolecules 9, 2477–2486 (2008).  https://doi.org/10.1021/bm800502j CrossRefGoogle Scholar
  45. 45.
    M.A.M. Hoffmann, P.J.J.M. van Mil, J. Agric. Food Chem. 45, 2942–2948 (1997).  https://doi.org/10.1021/jf960789q CrossRefGoogle Scholar
  46. 46.
    R. Eisert, L. Felau, L.R. Brown, Anal. Biochem. 353, 144–146 (2006).  https://doi.org/10.1016/j.ab.2006.03.015 CrossRefGoogle Scholar
  47. 47.
    J.S. Kavanaugh, W.F. Moo-Penn, A. Arnone, Biochemistry 32, 2509–2513 (1993)CrossRefGoogle Scholar
  48. 48.
    Y. Maya, M. Ono, H. Watanabe, M. Haratake, H. Saji, M. Nakayama, Bioconj. Chem. 20, 95–101 (2008)CrossRefGoogle Scholar
  49. 49.
    M. Ono, Y. Maya, M. Haratake, K. Ito, H. Mori, M. Nakayama, Biochem. Biophys. Res. Commun. 361, 116–121 (2007)CrossRefGoogle Scholar
  50. 50.
    R. Khodarahmi, M.R. Ashrafi-Kooshk, Int. J. Biol. Macromol. 100, 18–36 (2017).  https://doi.org/10.1016/j.ijbiomac.2016.09.074 CrossRefGoogle Scholar
  51. 51.
    G. Kuang, N.A. Murugan, Y. Tu, A. Nordberg, H. Agren, J. Phys. Chem. B. 119, 11560–11567 (2015).  https://doi.org/10.1021/acs.jpcb.5b05964 CrossRefGoogle Scholar
  52. 52.
    H. Rasouli, M.H. Farzaei, R. Khodarahmi, Int. J. Food Prop. 20, 1700–1741 (2017)CrossRefGoogle Scholar
  53. 53.
    S.A. Ghadami, F. Bemporad, B.M. Sala, G. Tiana, S. Ricagno, F. Chiti, Cell. Mol. Life Sci. 74, 3577–3598 (2017)CrossRefGoogle Scholar
  54. 54.
    W.J. Huang, X. Zhang, W.W. Chen, Biomed. Rep. 4, 519–522 (2016).  https://doi.org/10.3892/br.2016.630 CrossRefGoogle Scholar
  55. 55.
    S. Maghsoudi, M.R. Ashrafi-Kooshk, M. Shahlaei, S.A. Ghadami, S. Ghobadi, A. Mostafaie, R. Khodarahmi, J. Iran. Chem. Soc. 10, 937–950 (2013).  https://doi.org/10.1007/s13738-013-0231-7 CrossRefGoogle Scholar
  56. 56.
    A. Jangholi, M.R. Ashrafi-Kooshk, S.S. Arab, S. Karima, M. Poorebrahim, S.A. Ghadami, A.A. Moosavi-Movahedi, R. Khodarahmi, Int. J. Biol. Macromol. 109, 188–204 (2018).  https://doi.org/10.1016/j.ijbiomac.2017.12.071 CrossRefGoogle Scholar
  57. 57.
    Y. Porat, A. Abramowitz, E. Gazit, Chem. Biol. Drug Des. 67, 27–37 (2006).  https://doi.org/10.1111/j.1747-0285.2005.00318.x CrossRefGoogle Scholar
  58. 58.
    J.S. Ahn, J.-H. Lee, J.-H. Kim, S.R. Paik, Anal. Biochem. 367, 259–265 (2007).  https://doi.org/10.1016/j.ab.2007.05.023 CrossRefGoogle Scholar
  59. 59.
    W. Klunk, Neurobiol. Aging 19, 145–147 (1998)CrossRefGoogle Scholar
  60. 60.
    Y. Li, X. Qiang, L. Luo, Y. Li, G. Xiao, Z. Tan, Y. Deng, Bioorg. Med. Chem. 24, 2342–2351 (2016)CrossRefGoogle Scholar
  61. 61.
    K.-F. Liew, K.-L. Chan, C.-Y. Lee, Eur. J. Med. Chem. 94, 195–210 (2015)CrossRefGoogle Scholar
  62. 62.
    W.E. Klunk, Y. Wang, G. Huang, M.L. Debnath, D.P. Holt, C.A. Mathis, Life Sci. 69, 1471–1484 (2001)CrossRefGoogle Scholar
  63. 63.
    C.A. Mathis, B.J. Bacskai, S.T. Kajdasz, M.E. McLellan, M.P. Frosch, B.T. Hyman, D.P. Holt, Y. Wang, G.-F. Huang, M.L. Debnath, Bioorg. Med. Chem. Lett. 12, 295–298 (2002)CrossRefGoogle Scholar
  64. 64.
    E.E. Nesterov, J. Skoch, B.T. Hyman, W.E. Klunk, B.J. Bacskai, T.M. Swager, Angew. Chem. Int. Ed. 44, 5452–5456 (2005)CrossRefGoogle Scholar
  65. 65.
    J. Rautio, K. Laine, M. Gynther, J. Savolainen, AAPS J. 10, 92–102 (2008)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Medical Biology Research CenterKermanshah University of Medical SciencesKermanshahIran
  2. 2.Department of Biology and Biochemistry, Faculty of ScienceIslamic Azad UniversitySanandajIran
  3. 3.Pharmaceutical Sciences Research Center, Faculty of PharmacyKermanshah University of Medical SciencesKermanshahIran
  4. 4.Nano Drug Delivery Research Center, Faculty of PharmacyKermanshah University of Medical SciencesKermanshahIran
  5. 5.Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and TechnologyACECRTehranIran
  6. 6.Department of Pharmacognosy and Biotechnology, Faculty of PharmacyKermanshah University of Medical SciencesKermanshahIran

Personalised recommendations