Advertisement

Ultrasound-assisted improved synthesis of 5-(benzylthio)-1,3,4-thiadiazol-2-amine derivatives: an experimental and computational study

  • Taner Erdogan
Original Paper
  • 18 Downloads

Abstract

The main objects of this study are: (1) to propose alternative efficient methods for the synthesis of 5-amino-1,3,4-thiadiazole-2-thiol and 5-(benzylthio)-1,3,4-thiadiazol-2-amine derivatives, (2) to investigate the reactions and the chemical species which take place in the investigated reactions computationally via density functional theory (DFT) calculations, (3) to make a comparison between experimental and computationally obtained data, and (4) to make a comparison between the computational methods to find out the best computational technique to simulate the investigated molecules and reactions. The study consists of two parts. In the first part, synthesis of 5-amino-1,3,4-thiadiazole-2-thiol and 5-(benzylthio)-1,3,4-thiadiazol-2-amine derivatives have been carried out. For both syntheses, it has been proposed that the reactions can be carried out effectively with the use of ultrasound. To the best of our knowledge, this is the first use of ultrasound for both reactions. The results showed that ultrasound can increase the efficiency of the investigated reactions and can be a good alternative to conventional methods. In the second part of the study, some DFT calculations have been performed on the chemical species which take place in the investigated reactions. In computational studies, seven different basis sets have been used. In this second part, comparisons have been made (1) between experimental and computationally obtained data, and (2) between the computational techniques to reveal the best method for the investigated molecules.

Keywords

Thiadiazole Ultrasound Sonochemistry Computational chemistry DFT 

Notes

Funding

This work was financially supported by Kocaeli University Scientific Research Projects Unit. Project Numbers: 2011/062; 2017/38 HD.

Supplementary material

13738_2018_1567_MOESM1_ESM.docx (10.1 mb)
Supplementary material 1 (DOCX 10376 KB)

References

  1. 1.
    C.B. Chapleo, M. Myers, P.L. Myers, J.F. Saville, A.C.B. Smith, M.R. Stillings, I.F. Tulloch, D.S. Walter, A.P. Welbourn, J. Med. Chem. (1986)  https://doi.org/10.1021/jm00161a024 CrossRefPubMedGoogle Scholar
  2. 2.
    C.B. Chapleo, P.L. Myers, A.C.B. Smith, I.F. Tulloch, D.S. Walter, J. Med. Chem. (1987)  https://doi.org/10.1021/jm00388a038 CrossRefPubMedGoogle Scholar
  3. 3.
    M.R. Stillings, A.P. Welbourn, D.S. Walter, J. Med. Chem. (1986)  https://doi.org/10.1021/jm00161a025 CrossRefPubMedGoogle Scholar
  4. 4.
    M.T. Javid, F. Rahim, M. Taha, H.U. Rehman, M. Nawaz, A. wadood, S. Imran, I. Uddin, A. Mosaddik, K.M. Khan, Bioorg. Chem. (2018)  https://doi.org/10.1016/j.bioorg.2018.03.022 CrossRefPubMedGoogle Scholar
  5. 5.
    Y. Song, D.T. Connor, A.D. Sercel, R.J. Sorenson, R. Doubleday, P.C. Unangst, B.D. Roth, V.G. Beylin, R.B. Gilbertsen, K. Chan, D.J. Schrier, A. Guglietta, D.A. Bornemeier, R.D. Dyer, J. Med. Chem. (1999)  https://doi.org/10.1021/jm980570y CrossRefPubMedGoogle Scholar
  6. 6.
    L.M.T. Frija, A.J.L. Pombeiro, M.N. Kopylovich, Coord. Chem. Rev. (2016)  https://doi.org/10.1016/j.ccr.2015.10.003 CrossRefGoogle Scholar
  7. 7.
    F. Clerici, D. Pocar, M. Guido, A. Loche, V. Perlini, M. Brufani, J. Med. Chem. (2001)  https://doi.org/10.1021/jm001027w CrossRefPubMedGoogle Scholar
  8. 8.
    V. Dubey, M. Pathak, H.R. Bhat, U.P. Singh, Chem. Biol. Drug Des. (2012)  https://doi.org/10.1111/j.1747-0285.2012.01433.x CrossRefPubMedGoogle Scholar
  9. 9.
    S. Vudhgiri, D. Koude, D.K. Veeragoni, S. Misra, R.B.N. Prasad, R.C.R. Jala, Bioorg. Med. Chem. Lett. (2017)  https://doi.org/10.1016/j.bmcl.2017.06.004 CrossRefPubMedGoogle Scholar
  10. 10.
    Y.M. Zhang, M.X. Liu, Q. Lin, Q.A. Li, T.B. Wei, J. Chem. Res. (2010)  https://doi.org/10.3184/030823410x12876712319282 CrossRefGoogle Scholar
  11. 11.
    L.H. Shen, H.X. Wang, J.P. Hu, L. Zhang, Y. Li, Y.H. Kang, Lat. Am. J. Pharm. 34(2), 264–268 (2015)Google Scholar
  12. 12.
    P.P. Liu, C. Shu, L.J. Liu, Q.C. Huang, Y.Q. Peng, Bioorg. Med. Chem. (2016)  https://doi.org/10.1016/j.bmc.2016.03.013 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Y.J. Gao, S. Samanta, T.A. Cui, Y. Lam, Chem. Med. Chem (2013)  https://doi.org/10.1002/cmdc.201300244 CrossRefPubMedGoogle Scholar
  14. 14.
    T. Wang, Y.H. Zhang, S. Yu, H. Ji, Y.S. Lai, S.X. Peng, Chin. Chem. Lett. (2008)  https://doi.org/10.1016/j.cclet.2008.05.044 CrossRefGoogle Scholar
  15. 15.
    A. Foroumadi, S. Emami, A.O. Hassanzadeh, M. Rapaee, K. Sokhanvar, M.H. Moshafi, A. Shafiee, Bioorg. Med. Chem. Lett. (2005)  https://doi.org/10.1016/j.bmcl.2005.07.016 CrossRefPubMedGoogle Scholar
  16. 16.
    A. Foroumadi, L. Firoozpour, S. Emami, S. Mansouri, A.H. Ebrahimabadi, A. Asadipour, M. Amini, N. Saeid-Adeli, A. Shafiee, Arch. Pharm. Res. (2007)  https://doi.org/10.1007/bf02977685 CrossRefPubMedGoogle Scholar
  17. 17.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J.A.,J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 (Gaussian Inc., Wallingford, 2013)Google Scholar
  18. 18.
    M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, J. Cheminform. (2012)  https://doi.org/10.1186/1758-2946-4-17 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    R. Dennington, T. Keith, J. Millam, GaussView, Version 5 (Shawnee Mission, KS, Semichem Inc., 2009)Google Scholar
  20. 20.
    J.B. Foresman, Æ Frisch, Exploring Chemistry with Electronic Structure Methods, Second edn. (Gaussian, Inc, Pittsburgh, PA, 1996)Google Scholar
  21. 21.
    X.Q. Shen, Z.J. Li, H.Y. Zhang, H.B. Qiao, Q.A. Wu, H.Y. Wang, Y. Zu, J. Phys. Chem. Solids (2005)  https://doi.org/10.1016/j.jpcs.2005.08.085 CrossRefGoogle Scholar
  22. 22.
  23. 23.
    P.K. Chattaraj, U. Sarkar, D.R. Roy, Chem. Rev. (2006)  https://doi.org/10.1021/cr040109f CrossRefPubMedGoogle Scholar
  24. 24.
    R.S. Mulliken, J. Chem. Phys. (1934)  https://doi.org/10.1063/1.1749394 CrossRefGoogle Scholar
  25. 25.
    R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. (1983)  https://doi.org/10.1021/ja00364a005 CrossRefGoogle Scholar
  26. 26.
    R.G. Parr, L. Von Szentpaly, S.B. Liu, J. Am. Chem. Soc. (1999)  https://doi.org/10.1021/ja983494x CrossRefGoogle Scholar
  27. 27.
    R.G. Pearson, J. Am. Chem. Soc. (1963)  https://doi.org/10.1021/ja00905a001 CrossRefGoogle Scholar
  28. 28.
    R.G. Pearson, J. Chem. Educ. (1968)  https://doi.org/10.1021/ja00905a001 CrossRefGoogle Scholar
  29. 29.
    R.G. Pearson, J. Chem. Educ. (1999)  https://doi.org/10.1021/ed076p267 CrossRefGoogle Scholar
  30. 30.

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical Processing Technologies, Kocaeli Vocational SchoolKocaeli UniversityKocaeliTurkey

Personalised recommendations