Advertisement

Natural pigments in dye-sensitized solar cell (DSSC): a DFT-TDDFT study

  • Farzaneh Zanjanchi
  • Javad Beheshtian
Original Paper
  • 9 Downloads

Abstract

The molecular structures and photophysical properties of twelve types of the dyes from natural pigments of chlorophyll, flavonoid, carotenoid and anthocyanin were calculated with density functional theory (DFT) and time-dependent DFT (TD-DFT). Based on the comparison and better agreement between experimental wavelengths of maximum absorption and their calculated values with functionals of B3LYP, CAM-B3LYP and BHand-H, the B3LYP/6-31G** level was chosen for the process of our studies. The dyes’ properties in solvent environment were carried out using conductor-like polarizable continuum model methods (CPCM-DFT and TD-CPCM-DFT). The results show that pigment type affects the photophysical properties, and the dyes of a specific pigment type have nearly the same properties. Anthocyanins have the highest values of ionization potential (IP), electron affinity (EA), electronic chemical potential (µ) (their absolute values), chemical hardness (η), electrophilicity index (ω), electroaccepting power (ω+) and electrodonating power (ω), which can lead to high efficiency of these dyes type for dye-sensitized solar cells (DSSCs). Energy gap of ELUMO and EHOMO of the dyes respectively with the conduction band edge of TiO2 (ECB) and Eredox of \(\left(\tt {I^ - }/I_{3}^{ - }\right)\) couple (ΔEL and ΔEH), the free energy difference for electron injection (ΔGinject) and the driving force for dye regeneration (ΔGreg), the maximum absorption wavelengths of peaks (λmax) and oscillator strength values (f) for all the dyes in gas, acetonitrile and water phases were calculated and explained. These parameters show that carotenoids, chlorophylls and anthocyanins are more appropriate pigments than flavonoid pigment and the estimated open-circuit photo-voltage values (eVoc) showed that flavonoids are the desirable pigment. We expect these results could be helpful for DSSC producers to choose highly efficient natural dyes according to their optical and electronic properties.

Keywords

Dye-sensitized solar cells Natural pigment DFT TD-DFT Dye 

Supplementary material

13738_2018_1561_MOESM1_ESM.docx (3.6 mb)
Supplementary material 1 The UV–Vis absorption spectra of the dyes in the acetonitrile and water solvents are shown in Figs. S1 and S2, respectively (DOCX 3647 KB)

References

  1. 1.
    A. Mahmood, Sol. Energy 123, 127 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Shalini, R. Balasundara prabhu, S. Prasanna, T.K. Mallick, S. Senthilarasu, Renew. Sust. Energ. Rev. 51, 1306 (2015)CrossRefGoogle Scholar
  3. 3.
    H. Hug, M. Bader, P. Mair, T. Glatzel, Appl. Energy 115, 216 (2014)CrossRefGoogle Scholar
  4. 4.
    P. Pounraj, V. Mohankumar, M. Senthil Pandian, P. Ramasamy, J. Mol. Graph. Model. 79, 235 (2018)CrossRefGoogle Scholar
  5. 5.
    N.T.R.N. Kumara, A. Lim, C.M. Lim, M.I. Petra, P. Ekanayake, Renew. Sust. Energ. Rev. 78, 301 (2017)CrossRefGoogle Scholar
  6. 6.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02, Gaussian Inc., Wallingford,(2004)Google Scholar
  7. 7.
    M. Karelson, V.S. Lobanov, A.R. Katritzky, Chem. Rev. 96, 1027 (1996)CrossRefGoogle Scholar
  8. 8.
    M. Grätzel, Nature 414, 338 (2001)CrossRefGoogle Scholar
  9. 9.
    D. Cahen, G. Hodes, M. Grätzel, J.F. Guillemoles, I. Riess, J. Phys. Chem. B 104, 2053 (2000)CrossRefGoogle Scholar
  10. 10.
    L. Yuanzuo, L. Yuanchao, S. Peng, M. Fengcai, L. Jianping, S. Mengtao, RSC. Adv. 7, 20520 (2017)CrossRefGoogle Scholar
  11. 11.
    R.G. Pearson, W.E. Palke, J. Phys. Chem. 96, 3283 (1992)CrossRefGoogle Scholar
  12. 12.
    R.K. Roy, S. Krishnamurti, P. Geerlings, S. Pal, J. Phys. Chem. A 102, 3746 (1998)CrossRefGoogle Scholar
  13. 13.
    J.L. Gázquez, A. Cedillo, A. Vela, J. Phys. Chem. A 111, 1966 (2007)CrossRefGoogle Scholar
  14. 14.
    R.G. Parr, V.L. Szentpály, S.B. Liu, ‎J. Am. Chem. Soc. 121, 1922 (1999)CrossRefGoogle Scholar
  15. 15.
    J. Preat, D. Jacquemina, E.A. Perpète, Energy Environ. 3, 891 (2010)CrossRefGoogle Scholar
  16. 16.
    J.i. Zhang, Y.-H. Kan, H.-B. Li, Y. Geng, Y. Wu, Z.-M. Su, Dyes Pigm. 95, 313 (2012)CrossRefGoogle Scholar
  17. 17.
    C.-R. Zhang, Z.-J. Liu, Y.-H. Chen, H.-S. Chen, Y.-Z. Wu, W.J. Feng, D.-B. Wang, Curr. Appl. Phys. 10, 77 (2010)CrossRefGoogle Scholar
  18. 18.
    W. Sang-aroon, S. Saekow, V. Amornkitbamrung, J. Photochem. Photobiol. A 236, 35 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Wei, K. Li, X. Lu, Z. Zhao, Y. Shao, Y. Dang, S. Li, W. Guo, Mater. Chem. Phys. 173, 139 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Reiss, A. Heller, J. Phys. Chem. 89, 4207 (1985)CrossRefGoogle Scholar
  21. 21.
    Y. Bai, J. Zhang, D. Zhou, Y. Wang, M. Zhang, P. Wang, J. Am. Chem. Soc. 133, 11442 (2011)CrossRefGoogle Scholar
  22. 22.
    A. Islam, H. Sugihara, H. Arakawa, J. Photochem. Photobiol. A Chem. 158, 131 (2003)CrossRefGoogle Scholar
  23. 23.
    I.N. Obotowo, I.B. Obot, U.J. Ekpe, J. Mol. Struct. 1122, 80 (2016)CrossRefGoogle Scholar
  24. 24.
    A. Galano, R. Vargas, A. Martínez, Phys. Chem. Chem. Phys. 12, 193 (2010)CrossRefGoogle Scholar
  25. 25.
    A. Martínez, R. Vargas, A. Galano, J. Phys. Chem. B 113, 12113 (2009)CrossRefGoogle Scholar
  26. 26.
    H. Tributsch, Photochem. Photobiol. 16, 261 (1972)CrossRefGoogle Scholar
  27. 27.
    H. Chang, H.M. Wu, T.L. Chen, K.D. Huang, C.S. Jwo, Y.J. Lo, J. Alloy. Compd. 495, 606 (2010)CrossRefGoogle Scholar
  28. 28.
    A.R. Hernandez-Martinez, M. Estevez, S. Vargas, F. Quintanilla, R. Rodriguez, Int. J. Mol. Sci. 12, 5565 (2011)CrossRefGoogle Scholar
  29. 29.
    A.O. Boyo, I.O. Abdulsalami, T. Oluwa, S.O. Oluwole, A. Umar, Sci. J. Phys. (2013)  https://doi.org/10.7237/sjp/182 Article ID sjp-182CrossRefGoogle Scholar
  30. 30.
    M. Narayan, A. Raturi, Appl. Solar Energy 7, 112 (2011)CrossRefGoogle Scholar
  31. 31.
    V. Shanmugan, M. Subbaiah, A. Sambandam, M. Ramaswamy, Spectrochim. Acta A Mol. Biomol. Spectrosc. 104, 35 (2013)CrossRefGoogle Scholar
  32. 32.
    N.M. Gomez-Ortiz, I.A. Vazquez-Maldonado, A.R. Perez-Espadas, G.J. Mena-Rejon, J.A. Azamar-Barrios, G. Oskam, Sol. Energy Mater. Sol. Cells. 94 l, 40 (2010)CrossRefGoogle Scholar
  33. 33.
    A.R. Hernández-Martínez, M. Estevez, S. Vargas, F. Quintanilla, R. Rodríguez, in First international congress on instrumentation and applied sciences 10, 38 (2012)Google Scholar
  34. 34.
    R. Grünwald, H. Tributsch, J. Phys. Chem. 101, 2564 (1997)CrossRefGoogle Scholar
  35. 35.
    Z. Huizhi, L. Wu, Y. Gao, T. Ma, J. Photochem. Photobiol. A Chem. 219, 188 (2011)CrossRefGoogle Scholar
  36. 36.
    S. Hao, J. Wu, Y. Huang, J. Lin, Sol. Energy 80, 209 (2006)CrossRefGoogle Scholar
  37. 37.
    S. Meng, J. Ren, E. Kaxiras, Nano Lett. 8, 3266 (2008)CrossRefGoogle Scholar
  38. 38.
    P. Prajongtat, S. Suramitr, S. Nokbin, K. Nakajima, K. Mitsuke, S. Hannongbua, J. Mol. Graph. Model. 76, 551 (2017)CrossRefGoogle Scholar
  39. 39.
    N. Mohammadi, P.J. Mahon, F. Wang, J. Mol. Graph. Model. 40, 64 (2013)CrossRefGoogle Scholar
  40. 40.
    S. Hwang, J.H. Lee, C. Park, H. Lee, C. Kim, C. Park, M. Lee, W. Lee, J. Park, K. Kim, N. Park, C. Kim, Chem. Commun. 4887 (2007)Google Scholar
  41. 41.
    W. Fan, D. Tan, Q. Zhang, H. Wang, J. Mol. Graph. Model. 57, 62 (2015)CrossRefGoogle Scholar
  42. 42.
    A. Fukui, R. Komiya, R. Yamanaka, A. Islam, L. Han, Sol. Energy Mater. Sol. Cells 90, 649 (2006)CrossRefGoogle Scholar
  43. 43.
    Z. Kebedea, S.-E. Lindquistb, Sol. Energy Mater. Sol. Cells 57, 259 (1999)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Takestan BranchIslamic Azad UniversityTakestanIran
  2. 2.Department of ChemistryShahid Rajaee Teacher Training UniversityTehranIslamic Republic of Iran

Personalised recommendations